
Background
The skin is the largest organ of the body and provides 
the main barrier between the internal and external 
environment. It consists of three separate and diverse 
layers, each one with a distinct cellular composition, 
characteristic, and function: epidermis, dermis, and 
hypodermis. The stratum corneum represents the 
outermost layer of the epidermis in contact with the external 
environment and is composed of large flat polyhedral 
cells, the corneocytes, which have lost their organelles 
and are said to be dead but remain biochemically active 
(1). First and foremost, it keeps water inside the body. 
Similarly, the stratum corneum is also a barrier against 
UV radiation due to keratins and proteins that compose 
it. This skin layer limits the entry of applied substances 
and regulates water loss through its stratum corneum (2). 
The barrier function of the skin is not absolute, and its 
permeability is linked to the physicochemical properties 
of the molecules in contact (3). The absorbed molecules 
are distributed in the organism after a passive transfer, 

eliminated, or stored. Hence, the importance of studying 
the permeability of active substances introduced into 
cosmetic preparations for cutaneous use (4). The in vitro 
diffusion tests through the skin are expensive and delicate. 
Today, this test has become more accessible by in silico 
methods (5,6). This permeability is deduced by calculating 
the skin permeability coefficient (Log Kp). This prediction 
is based on the linear model by Potts and Guy (7). 

The ability of phenolic compounds as plant-derived 
natural agents to act as photoprotectors, antioxidants, and 
antimicrobial substances is of interest for cosmetic and 
therapeutic purposes. Due to their natural origin and weak 
toxicity, phenolic compounds are interesting agents for 
innovative pharmaceutical treatments for skin disorders 
or the development of new cosmetic products (8). The 
bioavailability of phenolic compounds depends on their 
subclass and physicochemical properties, including the 
degree of polymerization, glycosylation, or molecular 
properties, their polarity and their interaction with 
nutrients, the proteins and carbohydrates in their cells, as 
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Abstract
Background: The skin is the largest organ of the body and provides the main barrier between the internal 
and external environment. Assessment of skin permeability is of critical importance for understanding and 
predicting in vivo efficacy and bioavailability of bioactive phenolic compounds. 
Objectives: This study investigated the relationship between skin permeability and phenolic compounds 
using in silico methods. 
Methods: Screening of skin permeability was performed on 475 randomly selected phenolic compounds. 
Molecules were expressed in SMILE format downloaded from Phenol-Explorer Database (version 3.6, 
2016). Then, their skin permeability was determined by the linear model of the quantitative structure-
activity relationship (QSAR). The obtained results were investigated for normal distribution and correlation 
with pharmacological properties. 
Results: Our investigation showed that ferulate hydroxycinnamic acid derivatives were the most 
important phenolic subclass with a permeability of -1.65 cm/s. The relationship between permeability 
and lipophilicity, water solubility, synthetic accessibility, and bioavailability was evaluated. The statistical 
analysis revealed that the highest skin permeability was associated with three parameters: the topological 
polar surface area (TPSA), molecular weight, and lipophilicity (iLog P).
Conclusion: The cutaneous permeability depended on several chemical parameters of the molecule used. 
The classification of phenolic compounds according to their structures proved a wide variability in this 
permeability.
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well as the other components of the formulation in which 
they are introduced (9,10). The common classification of 
phenolic compounds distinguishes flavonoids and non-
flavonoids. The chemical structure of flavonoids is based 
on two aromatic rings connected by a bridge consisting 
of three carbons (C6-C3-C6). Flavonoids are divided 
into six main subclasses, namely flavonols, flavones, 
flavanones, flavan-3-ols, isoflavones, and anthocyanidins. 
In the physiological state, flavonoids occur usually in 
association with sugar as glycosides. The subclasses of 
non-flavonoids are phenolic acids (hydroxybenzoates 
(C6-C1), hydroxycinnamates (C6-C3)), lignans (C6-C3), 
and stilbenes (C6-C2-C6) (11). Two other subclasses 
of non-flavonoids are tannins and lignins (10). These 
compounds occur mainly as complicated biopolymers; 
hence, they lack a defined primary carbon base, and the 
chemical structure is unique to a particular polyphenol 
(12,13).

In our study, screening was carried out on 25 classes 
of phenolic compounds (Table 1), and the results of 
multivariate analysis showed that certain classes of 
phenolic compounds are more correlated with this 
coefficient. Ferulate hydroxycinnamic acid derivatives 
were the most crucial phenolic subclass. Afterwards, 
we studied the statistical interaction of this coefficient 
with the pharmacological properties, lipophilicity, water 
solubility, synthetic accessibility, and bioavailability.

Materials and Methods
Data Collection
The screening of skin permeability was performed on 475 
randomly selected phenolic compounds. Molecules were 
expressed in SMILE format, downloaded from Phenol-
Explorer Database version 3.6, 2016, a comprehensive 
online database on polyphenol contents in foods (14-16). 
These molecules were classified into 5 chemical classes 
and 25 subclasses according to their structures (Table 1).

Skin Permeability 
The linear model of quantitative structure-activity 
relationship (QSAR) was used to predict the permeability 
coefficient (Kp) according to Potts and Guy (7). The 
model was expressed by the following formula:

log Kp (cm/s) = 0.71log KOW - 0.0061 MW - 6.3 

Where Kp (cm/s) = skin permeability; KOW = octanol-
water partition coefficient; MW = molecular weight. 

Pharmacological Properties
The analysis of the pharmacological properties was 
carried out according to Daina et al (17). The topological 
polar surface area (TPSA) of phenolic compounds was 
defined as the surface sum over all polar atoms, primarily 
oxygen, including their attached hydrogen atoms. The 
lipophilicity was expressed as a consensus Log Po/w, it is 
defined as the decimal logarithm of the ratio of the molar 

concentrations of the neutral form in n-octanol and water 
(18). The aqueous solubility was calculated according to 
Delaney (19). Bioavailability score is formulated as the 
likelihood that a compound will have > 10% bioavailability 
in rats or measurable Caco-2 permeability (20). Synthetic 
accessibility value is a score based on the fragmental 
analysis of the structures of more than 13 million 
compounds. The score was normalized between 1 (easy 
synthesis) and 10 (complicated synthesis) (21).

Statistical Analysis
The statistical analysis was performed using Orange 
data mining software version 9.0 (Massachusetts, USA), 
and Metascape network analysis was performed using 
Cytoscape version 3.9.1 (U.S. National Institute of General 
Medical Sciences) (22). Pharmacological properties were 
evaluated online using SwissADME tool (http://www.
swissadme.ch/index.php) (17,23).

Results
Skin Permeability Distribution 
The normal distribution of various phenolic compounds 
according to their chemical class and subclass is illustrated 
in Figures 1A and 1B. The distribution was expressed as 
the mean (μ) and the standard deviation (σ). According 

Table 1. Class and Subclass of Phenolic Compounds Studied for their Skin 
Permeability

Class Subclass

Flavonoids

Anthocyanins

Dihydrochalcones

Flavanols

Flavanones

Flavones

Flavonols

Isoflavonoids

Phenolic acids

Hydroxybenzoic acids

Hydroxyphenylacetic acids

Hydroxyphenylpropanoic acids

Stilbenes Stilbenes

Lignans Lignans

Other polyphenols

Hydroxycinnamaldehydes 

Alkylmethoxyphenols

Hydroxycoumarins

Hydroxyphenylpropenes

Methoxyphenols

Naphthoquinones

Hydroxybenzaldehyde

Phenolic terpenes

Tyrosols

Ferulate hydroxycinnamic acids

Curcuminoids

Furanocoumarins

Other polyphenols

http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
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to Figure 1A, the lowest skin permeability values were 
associated with flavonoids with µ and σ equal to -8.872 
and 1.880, respectively. Phenolic acids (μ = -7.913), 
lignans (μ = -7.913), and stilbenes (μ = -6.20) followed 
flavonoids. The normal distribution of phenolic subclass 
showed that ferulate hydroxycinnamic acid derivatives 
have the highest skin permeability (with a log Kp of 
-1.65 cm/s), followed by alkylphenols (with a log Kp 
of -2.31 cm/s). The lowest values were recorded for 
anthocyanins with a log Kp of -9.793 cm/s (Figure 1B). 
The studied ferulate hydroxycinnamic acids derivates 
were 24-methylcholestanol ferulate, 24-methylcholesterol 
ferulate, 24-methyllathosterol ferulate, stigmastanol 
ferulate, sitosterol ferulate, schottenol ferulate, and 
24-methylenecholestanol ferulate. 

Linear Projection of Polyphenol Class and Subclass 
According to Pharmacological Properties
The linear projection of polyphenol class and subclass 
is illustrated in Figure 2A-B. For phenolic classification 
(Figure 2A), the class of flavonoids was associated with 
three parameters: the TPSA, the molecular weight, and 
skin permeability. Lignans, phenolic acids, and stilbenes 
were characterized by a random distribution. The higher 
skin permeability was associated with other phenolic 
classes, which leads us to study the subclasses of phenolic 
compounds. According to Figure 2B, it can be observed 
that the phenolic compounds classified under “others” in 
Figure 2A were better classified. It can also be seen that 
the classification gave a random distribution for most of 
the subclasses except for the alkylphenols and ferulates. 
In fact, these two classes were characterized by synthetic 

Figure 1. Bell Plot of Skin Permeability Distribution of Phenolic Class (A) and Subclass (B)
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accessibility and molecular mass.

Correlation Analysis of Polyphenol Pharmacological 
Properties and Skin Permeability
In Figure 3, seven hexagons are represented. These 
hexagons represent the nodes of the network. The red and 
blue lines represent negative and positive correlations, 
respectively. The line thickness means the correlation 
size at a P value ≤ 0.05. These hexagons represent the 
nodes of the Metascape correlation network. The skin 
permeability was negatively correlated with TPSA, water 
solubility (ESOL Log S), molecular weight, and synthetic 
accessibility. The Pearson correlation coefficients of log 
Kp were -0.866 for TPSA, -0.638 for molecular weight, 
-0.510 for ESOL Log S, and 0.529 for iLOGP.

Discussion
Skin permeability is widely recognized as an essential 
parameter to be considered for the delivery of active 
substances. Many different in silico approaches have been 
used to identify the correlation between the structure of 
the permeants and their permeability, reproduce the skin 

behavior, and predict the ability of specific chemicals to 
permeate this barrier. 

The skin permeability is deduced by calculating the skin 
permeability coefficient (log Kp). The relationship between 

Figure 2. Linear Projection of Polyphenol Class (A) and Subclass (B) According to Pharmacological Properties. Differences in sizes was associated with skin 
permeability

Figure 3. Metascape Correlation Network of Pharmacological Properties 
and Skin Permeability of Polyphenols. TPSA: topological polar surface 
area, iLog P: lipophilicity, ESOL Log S: water solubility, “log Kp”: skin 
permeability
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skin permeability and log partition coefficient (log Kp) 
has been extensively studied in recent years (6,24). Log 
Kp is a measure of the ability of a substance to partition 
or distribute between different phases, such as the skin 
and the surrounding environment. Log Kp values can be 
used as a predictor of the skin permeability of a substance, 
with higher log Kp values indicating a greater ability to 
penetrate the skin (25). Recent research has focused on 
developing in silico models to predict the skin permeability 
based on log Kp values, as well as investigating the impact 
of other factors such as chemical properties and solubility 
on skin permeability (26). Furthermore, another study 
has been conducted on specific classes of compounds as 
phenolic compounds to understand the skin permeability 
in relation to log Kp (27). Overall, research in the past 
decade has established log Kp as an important predictor 
of skin permeability; however, it is not the only factor and 
other properties should be taken into account (27).

Phenolic compounds are a class of naturally occurring 
compounds that have been found to have a wide range of 
beneficial effects on the skin owing to their antioxidant 
and anti-inflammatory properties (28-30). One of the 
main benefits of phenolic compounds for the skin is 
their ability to protect against UV damage and prevent 
photoaging (31). Additionally, phenolic compounds have 
been shown to improve the barrier function of the skin and 
reduce transepidermal water loss. In addition, phenolic 
compounds can help to boost collagen production, which 
is important for maintaining skin elasticity and firmness. 
They also create a more youthful and healthy-looking skin 
by improving skin texture, tone, and hydration (32).

Flavonoids, phenolic acids, stilbenes, and lignans are 
all types of phytochemicals found in plants. They have 
some similarities in terms of the chemical structure and 
biological activity; however, there are also some notable 
differences between them (33). Phenolic acids are a group 
of compounds that contain a phenolic group, which is an 
aromatic ring with one or more hydroxyl groups (33). 
Stilbenes are a class of compounds that have a stilbene 
skeleton including compounds such as resveratrol, 
which is found in grapes and red wine, and pterostilbene, 
which is found in blueberries (33). Lignans are a group 
of compounds that are found in plants, particularly in the 
seeds of flax and sesame. They have a complex structure 
that includes a phenylpropanoid and a neolignan unit 
(33). In our work, the research on the effect of the chemical 
class of phenolic compounds has shown that the classes 
studied, including flavonoids, phenolic acids, stilbenes, 
lignans, and so on, differ in their responses to cutaneous 
permeability. Flavonoids were characterized by the lowest 
skin permeability. The normal distribution of phenolic 
subclass showed that the ferulate hydroxycinnamic acids 
derivates had the highest skin permeability (with a log 
kp of -1.65 cm/s), followed by alkyphenols (with a log 
kp of -2.31 cm/s). The lowest values were recorded with 
anthocyanins, a log Kp of -9.793 cm/s. 

Ferulate is a hydroxycinnamic acid derivative. It is 

characterized by the presence of a ferulic acid moiety, 
which is an ester of ferulic acid and a carbohydrate 
or a sugar alcohol (33). In our stutdy, ferulic acid was 
characterized by a low skin permeabilty (-6.4 cm/s). 
Ferulate is considered to have low skin permeability by 
Zhang et al (34). However, Hartati et al (35) showed that 
ferulate could have the potential to act as a skin permeation 
enhancer, which means that it can help other molecules 
to penetrate the skin more easily. It is also known to 
have a free radical scavenging activity, which makes it an 
interesting molecule for the cosmetic industry (35). In our 
case, ferulic acid was associated with phytosterols, which 
are non-polar molecules, meaning that they do not have a 
positive or negative charge and are not attracted to polar 
substances such as water (36). They are hydrophobic, 
meaning that they do not dissolve in water and tend to 
repel it. Due to their non-polarity, phytosterols are mostly 
found in the lipid portion of the cell membrane and are 
not found in the aqueous portion of the cell (36).

The second subclass that has high skin permeability was 
alkylphenols, which is a group of compounds that contain 
both a phenolic group and an alkyl group. The phenolic 
group is an aromatic ring with one or more hydroxyl 
groups, while the alkyl group is a hydrocarbon chain 
that can vary in length and saturation. Some examples of 
alkylphenols include 5-pentacosylresorcinol (1.16 cm/s) 
and 5-pentacosenylresorcinol (0.86 cm/s). Alkylphenols, 
also called alkylresorcinols, belong to the family of 
phenolic lipids and are usually found in numerous 
biological species. In the particular case of higher plants, 
alkylresorcinols have been found in various counterparts 
with chains of 13-27 carbon atoms containing several 
saturations (37,38). Synthetic alkylphenols, such as 
nonylphenol and octylphenol, have been shown to have a 
wide range of potential environmental and health effects 
(39). Some studies have shown that some alkylphenols 
can mimic estrogenic hormones in the human body and 
can disrupt the endocrine system, leading to potential 
developmental and reproductive effects (40). In addition, 
alkylphenols can also be toxic to aquatic organisms and 
can lead to the feminization of fish populations (41).

In Orange data mining software, a linear projection 
graph is a visualization technique used to represent 
high-dimensional data in a lower-dimensional space. It 
is commonly used in data mining and machine learning 
to reduce the complexity of data and make data easier 
to interpret. The graph is created by projecting the 
data onto a linear subspace, typically using a technique 
such as principal component analysis (PCA) or multi-
dimensional scaling (MDS). The resulting graph can 
be used to identify patterns, clusters, or outliers in the 
data and gain a better understanding of the underlying 
structure of the data (23,24). According to the linear 
projection (Figure 2) and the Metascape correlation 
network (Figure 3) of polyphenol class and subclass 
according to pharmacological properties, it was revealed 
that the highest skin permeability was associated with 
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three parameters: the molecular weight, lipophilicity (iLog 
P), and the TPSA. TPSA is a molecular descriptor used to 
describe the polar surface area of a molecule. It is based on 
the concept of topological analysis of molecular surface and 
is related to the ability of a molecule to interact with polar 
environments, such as the polar regions of cell membranes 
(42). There are studies that have suggested a correlation 
between TPSA and skin permeability. Nakao et al (43) 
found that TPSA was a good predictor of skin permeation 
for a diverse group of compounds, including lipophilic 
and hydrophilic compounds. Phenolic compounds with 
a polar surface area greater than 140 angstroms squared 
(Å2) tend to be poor at permeating cell membranes (44). 
To penetrate the blood-brain barrier and act on receptors 
in the central nervous system, a TPSA of less than 90 Å2 is 
usually required for molecules (45). 

Bioavailability corresponds to the speed and extent of 
the passage of the active principle (drug or metabolite) 
into the general circulation, thus reaching the site of 
action (46). The bioavailability of active ingredients in 
dermal preparations is a key factor (47). In our work, it 
was revealed that phenolic compounds with high skin 
permeability were not associated with high bioavailability 
scores. Hydroxyphenylacetic, hydroxybenzoic, and 
hydroxycinnamic acids were characterized by the best 
bioavailability score (0.85). On the contrary, ferulate 
hydroxycinnamic acid derivatives were characterized 
by a very low bioavailability score (0.11), independent 
of their molecular weights (48). On the other hand, skin 
permeability was positively correlated with lipophilicity 
(iLog P) and bioavailability score. Since the passage of 
substances through the skin barrier is done according 
to a passive diffusion mechanism, only molecules that 
are small (molecular mass less than 1000 g/mol) and 
without electrical charge, not ionized, penetrate (49). 
Tian et al (50) showed that skin penetration of the drug 
showed a significant correlation with physicochemical 
parameters (log KO/W, molecular weight, polar surface, and 
polarizability). Pranitha and Lakshmi (51) concluded that 
the TPSA was the main significant factor for the study of 
ex-vivo transdermal flux variability of six drugs.

Prediction of skin permeability is an important factor 
in medicine because it determines how easily drugs and 
other compounds can penetrate the skin and reach the 
underlying tissues and organs. The skin is a barrier that 
protects the body from harmful external agents; however, 
it has to allow the passage of certain molecules to perform 
their functions (52). In dermatology, understanding skin 
permeability is important for the development of topical 
treatments for skin conditions, such as eczema, psoriasis, 
and acne (52). The ability of a drug or cosmetic product 
to penetrate the skin and reach the site of action can affect 
its efficacy and safety (53). In transdermal drug delivery, 
the ability of a drug to penetrate the skin and reach the 
bloodstream can be used to deliver drugs to the body in a 
controlled and sustained manner, avoiding the first-pass 
metabolism and the need for injection (54). This can be 

useful for the treatment of chronic conditions such as 
pain and hypertension, as well as hormone replacement 
therapy (54). Additionally, the skin permeability can be a 
concern in cosmetics and personal care products, as some 
compounds may be harmful if they penetrate the skin 
and reach the bloodstream. Therefore, it is important to 
understand the skin permeability to ensure the safety of 
the products (55).

There are several limitations to predicting skin 
permeability. In vitro methods, such as Franz diffusion 
cells and artificial membranes, are commonly used to 
predict skin permeability while they may not accurately 
reflect the in vivo situation. The skin has a complex 
structure and physiology, and the artificial membranes 
used in in vitro methods may not fully mimic the barrier 
properties of the skin (56). For the in silico studies, there 
is a lack of data on the permeability of many compounds 
through the skin. This can make it difficult to predict 
the permeability of new compounds or to compare the 
permeability of different compounds (57). Likewise, 
there is significant interindividual variability in skin 
permeability, and this can make it difficult to predict 
the permeability of a compound in a specific individual. 
Factors such as age, gender, genetics, and skin condition 
can all affect skin permeability. Besides, the pH and 
temperature of the skin can affect the permeability of a 
compound. The pH of the skin can vary depending on the 
location, and the temperature can vary depending on the 
time of day and the individual’s body temperature (58).

Conclusion
In conclusion, our study showed that the cutaneous 
permeability depended on several chemical parameters 
of the molecule used. The classification of phenolic 
compounds according to their structures proved a wide 
variability in this permeability. Chemical classes with 
relatively low molecular weights were better rated for 
penetrating the skin. The normal distribution of phenolic 
subclass showed that ferulate derivative had the highest 
skin permeability. The lowest permeability values were 
associated with flavonoids. The statistical analysis showed 
that the TPSA was the main significant factor in the study.
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