
Background
According to a report on colorectal cancer (CRC), the 
Global Burden of Disease study estimated that 1.8 million 
of the world’s population were affected by CRC in 2017, 
causing 896 000 global deaths (1). CRC is known as the 
third and second frequent cause of global cancer mortality 
in males and females, respectively (2,3). Therefore, CRC is 
one of the most frequent causes of malignancies worldwide 
(4,5). One of the problems associated with CRC is that 
most of the patients with CRC are diagnosed at the late 
stages of the disease when the tumor cells have metastasized 
to other organs. Therefore, there are no early clinical 
signs to be used for diagnosis before the disease enters an 
irretrievable stage. Notably, it was reported that CRC could 
be treated at early stages, and the 5-year relative survival 
rate was 90% (4,6,7). To date, the screening methods for 
CRC include colonoscopy (3), fecal immunochemical test 
(8), multi-target stool DNA testing (9), and methylated 

septin9 (mSEPT9) assay (10). The gold standard approach 
for the diagnosis of CRC is based on colonoscopy, which 
is an invasive method and has some complications (11). 
Although the other mentioned screening methods provide 
non-invasive approaches to detect CRC, the sensitivity 
and specificity of the techniques are not satisfactory for 
scientists (3,9,12). Therefore, alternative non-invasive 
procedures are highly required using applicable biomarker 
signatures and novel bioinformatics technologies for early 
diagnosis and enhancing CRC survival rate.

Although many studies have been performed to reveal 
the molecular mechanisms underlying CRC, the exact 
biological processes (BPs), molecular functions (MFs), 
cellular components (CCs), enriched pathways, and the 
most important genes and regulators involved in CRC are 
not entirely revealed yet (13,14).

The miRNAs are noncoding ribonucleic acids and 
consisted of almost 16-22 nucleotides. They bind to their 
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Abstract
Background: Colorectal cancer (CRC) is one of the most frequent causes of gastrointestinal tumors. Due 
to the invasiveness of the current diagnostic methods, there is an urgent need to develop non-invasive 
diagnostic approaches for CRC. The exact mechanisms and the most important genes associated with the 
development of CRC are not fully demonstrated. 
Objectives: This study aimed to identify differentially expressed miRNAs (DEMs), key genes, and their 
regulators associated with the pathogenesis of CRC. The signaling pathways and biological processes 
(BPs) that were significantly affected in CRC were also indicated. Moreover, two non-invasive models 
were constructed for CRC diagnosis. 
Methods: The miRNA dataset GSE59856 was downloaded from the Gene Expression Omnibus (GEO) 
database and analyzed to identify DEMs in CRC patients compared with healthy controls (HCs). A 
protein-protein interaction (PPI) network was built and analyzed. Significant clusters in the PPI networks 
were identified, and the BPs and pathways associated with these clusters were studied. The hub genes in 
the PPI network, as well as their regulators were identified. 
Results: A total of 569 DEMs were demonstrated with the criteria of P value <0.001. A total of 110 
essential genes and 30 modules were identified in the PPI network. Functional analysis revealed that 1005 
BPs, 9 molecular functions (MFs), 14 cellular components (CCs), and 887 pathways were significantly 
affected in CRC. A total of 22 transcription factors (TFs) were demonstrated as the regulators of the hubs. 
Conclusion: Our results may provide new insight into the pathogenesis of CRC and advance the diagnostic 
and therapeutic methods of the disease. However, confirmation is required in the future. 
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complementary sequences located at the target mRNAs 
leading to either degradation of the target mRNA or 
inhibition of protein production (15-17). It has been 
demonstrated that dysregulation of miRNAs is frequent 
in cancer, and the pathological origin of cancer is directly 
associated with changes in expression of these molecules. 
Although miRNAs are tissue-specific, previous studies 
reported that they are transferred into the circulation in 
several ways, such as passive leakage of apoptosis, necrosis 
(the environment inflammation), exosomes/microvesicles, 
lipoproteins, and RNA-protein complexes. Numerous 
studies have confirmed that the alteration in expression of 
circulating miRNAs is related to the origin, progression, 
therapeutic response, and patient survival of the disease 
(3,18-23). Accordingly, circulating miRNAs have become 
encouraging candidates for non-invasive molecular 
biomarkers of malignancy (18).

In recent years, scientists have used machine learning 
tools (MLTs) to resemble predictive models and to classify 
the groups under study (24). It has been confirmed that 
the results of classification performed by MLTs are more 
reliable in comparison with clustering algorithms such 
as principal component analysis (25). Support vector 
machine (SVM), as an MLT method, is a type of supervised 
learning algorithm with the salient advantages of average 
model statistics, including sensitivity, specificity, accuracy, 
and area under the curve (AUC), besides reducing the 
time cost in the training step (3,26,27). Moreover, SVM 
can successfully mine data obtained from ‘-omics-’ 
technologies, including microarray gene expression, 
proteomics, and metabolomics approaches (28).

Systems biology is a field of science that clarifies the 
meaning of an extensive amount of data derived from 
‘-omics-’ technologies (29). These technologies refer to 
high-throughput techniques that can potentially detect a 
large number of molecules (e.g., gene, transcript, protein, 
and metabolite) in biological samples, including serum, 
plasma, urine, tissue, and cerebrospinal fluid (30). In the 
present study, we performed a systems biology approach 
to identify differentially expressed microRNAs (miRNAs) 
(DEMs) between CRC samples and healthy controls 
(HCs) by mining microarray dataset GSE59856 (31).

Diagnostic models were constructed by SVM classifier 
using 1) DEMs and 2) the top-ranked miRNAs based on 
their weight coefficient in the initial diagnostic model. 
In addition, a protein-protein interaction (PPI) network 
was constructed based on the DEMs-target gene using 
the Mentha (32), InnateDB (33), ChEMBL (34), and 
Reactome (35) databases. The PPI network was analyzed 
using the Cytoscape software. Moreover, the most 
important genes, enriched gene ontology (GO) terms, 
and pathways involved in the pathogenesis of CRC were 
identified. Additionally, a gene regulatory network (GRN) 
base on the hub genes found in the PPI network was 
assembled to identify the regulatory transcription factors 

(TFs) associated with the disease.

Material and Methods
Microarray Data Set Acquisition
In the current study, we aimed to identify significant 
DEMs that can be provided as a capable diagnostic panel of 
biomarkers for patients with CRC. Micro-RNA expression 
profile of GSE59856 (31) was downloaded from the 
publicly available National Center for Biotechnology 
Information Gene Expression Omnibus database (NCBI 
GEO, http://www.ncbi.nlm.nih.gov/geo) (36). GSE59856 
consisted of 571 serum samples of different patients, 
including 50 CRC and 150 HCs based on the GPL18941 
platform (3D-Gene Human miRNA V20_1.0.0).

Statistical Analysis
Raw microarray data were acquired as a TXT file from 
the GEO database. Min-max normalization was applied 
using R programming environment (version 3.6.0) before 
statistical analysis. Orthogonal partial least squares (OPLS) 
was applied as an advanced supervised multivariate 
modeling. The microarray technology is frequently used for 
biomarker discovery (37). The outcome of this technique 
contains a large number of variables and small number of 
samples, which is well-known as high-throughput data. 
Multivariate statistical analyses (e.g., OPLS) are suitable 
for analyzing these types of data (38,39). This was done 
by using the “ropls” package from the R programming 
environment (version 3.6.0). The DEMs with a P value < 
0.001 were considered to be statistically significant.

Support Vector Machine Modeling
The SVM algorithm was utilized by performing the e1071 
R package (version 1.6-8; https://cran.r-project.org/web/
packages/e1071) for the classification of CRC and HCs. 
SVM is a supervised MLT for two-group classification with 
salient advantages, including high average classification 
sensitivity, specificity, and accuracy, besides lowering time 
cost in the training step (26,27). Two models were built 
using different sets of variables, which were as follows: 
1) DEMs with a P < 0.001, and 2) the top three ranked 
miRNAs based on their weight coefficient in the primary 
model. The radial kernel was implemented in SVM 
modeling, and the models were validated using leave-one-
out (LOO) cross-validation, repeating 100 times for each 
model. The three major statistics for a model, including 
sensitivity (Sn), specificity (Sp), and accuracy (ACC) 
were determined. The receiver operating characteristic 
(ROC) curves were generated using the Epi R package 
(version 2.19; https://cran.rproject.org/web/packages/
Epi) to evaluate the diagnostic ability of the SVM models. 
The major statistics for the models were calculated after 
performing each time LOO. Next, the average of the 
measurements was also determined. Furthermore, the 
AUC for each model was calculated after integrating the 

http://www.ncbi.nlm.nih.gov/geo
https://cran.r-project.org/web/packages/e1071
https://cran.r-project.org/web/packages/e1071
https://cran.rproject.org/web/packages/Epi
https://cran.rproject.org/web/packages/Epi
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results over the 100 iterations of LOO cross-validations.  

PPI Network and Gene Set Enrichment Analyses
We used the MiRWalk 2.0 database (http://zmf.umm.
uni-heidelberg.de/apps/zmf/mirwalk2/index.html) to 
identify validated DEMs-target genes (40). Subsequently, 
a set of proteins associated with the target genes was 
obtained and integrated from the Mentha (32), InnateDB 
(33), ChEMBL (34), and Reactome (35) databases. The 
non-human proteins were excluded from the dataset. 
Cytoscape tool (version 3.7.1; https://cytoscape.org/) was 
utilized to construct the PPI network. The PPI network is 
used to study the comprehensive activities and biological 
procedures in living systems (41). It is noteworthy that the 
interaction between two proteins could be either physical 
or functional (29,42). The ‘molecular complex detection’ 
(MCODE) plugin was used to determine highly dense 
connected zones in the PPI network. MCODE identifies 
condensed regions (known as clusters [modules]) in a PPI 
network, especially based on the neighborhood density of 
the nodes (43). In addition, MCODE can find the vertex 
of a cluster known as a seed node, based on the actual 
knowledge about the biological functions of the nodes 
(44). The advanced options for the MCODE were as 
follows: minimum score for clusters, 2; number of nodes 
involved in each cluster, ≥2; maximum depth from seed, 
100; and node score cutoff, 0.2. The ClueGO plugin 
(v2.3.3; Laboratory of Integrative Cancer Immunology, 
Paris, France) and the Reactome database (https://
reactome.org/) (45) were used to analyze the enriched 
BP category and pathways of the most critical clusters 
associated with CRC, respectively. ClueGO integrates the 
Kyoto Encyclopedia of Genes and Genomes, and BioCarta 
pathways to detect functionally correlated GO terms (46). 
In addition, the Protein ANalysis THrough Evolutionary 
Relationships (PANTHER) webserver (http://www.
pantherdb.org/) (47) was utilized to identify the enriched 
MFs and CCs of the DEMs-target genes associated with 
CRC. The GO terms and pathways enriched with false 
discovery rate (FDR) < 0.05 were considered statistically 

significant. The Network Analyzer tool was used to 
calculate the topological features of all the nodes in the 
network. Degree, betweenness, closeness, and eccentricity 
of the nodes were calculated to identify the most critical 
genes in the network. Accordingly, the nodes that had 
a betweenness and degree greater than 2-fold the mean, 
besides having a centrality and eccentricity higher than the 
average of the nodes in the network were considered as 
hub nodes.

Gene Regulatory Network Analyses
The iRegulon plugin was utilized to identify and visualize 
GRNs, known as motifs, including the determined hub 
genes and upstream regulatory TFs. It is notable that 
iRegulon performs an approach known as a genome-wide 
ranking-and-recovery technique to identify the motifs, by 
which all of the genes are scored in the genome through 
motif detection. Next, a normalized enrichment score 
(NES) was calculated for all of the TFs for each set of 
regulons. The NES determines the significance of the 
detected motif and is correlated with the AUC value of the 
motif (48-50).

Results
Identification of DEMs in CRC
A predictive model was built using OPLS for the normalized 
dataset consisted of 200 observations (HC, 150; CRC, 
50) and 2478 features. The statistics of the model were 
as follows: R2X = 0.101, R2Y = 0.93, and Q2 = 0.873, 
proposing that the model was statistically robust and able 
to distinguish CRC from HCs. A total of 569 miRNAs 
were determined as statistically discriminating variables 
for CRC compared with the healthy individuals from the 
OPLS diagnostic model, including 316 down- and 253 
up-regulated miRNAs. All DEMs were considered to be a 
potential panel of biomarkers for the diagnosis of CRC. They 
all had a P value < 0.001 (Table S1, Supplementary file 1). 
In addition, the expression heat map of the top 34 down-
regulated (fold change < 0.25) and the top 6 up-regulated 
(fold change > 4) DEMs were presented in Figure 1.

Figure 1. Hierarchical Clustering and Heat-map of the Top 40 DEMs. Note. Red and blue represent the high and low expression of the miRNA, 
respectively. DEM, differentially expressed miRNA.

http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/index.html
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/index.html
https://cytoscape.org/
https://reactome.org/
https://reactome.org/
http://www.pantherdb.org/
http://www.pantherdb.org/
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SVM Classifiers and Statistical Validation
Two predictive SVM models for CRC classification were 
constructed using 1) the primary dataset consisting of 569 
identified DEMs, and 2) the top three ranked miRNAs, 
including MIMAT0027353, MIMAT0031005, and 
MIMAT0019715 based on their weight coefficient with 
the radial SVM algorithm. The weight coefficients for the 
top 10 features are demonstrated in Figure 2. It should be 
noted that the SVM algorithm is vigorous in managing 
noisy data, besides being resistant against outliers, which is 
appropriate for classifying high-throughput datasets such 
as microarray gene expression (51). In the current study, 
the average statistics of the models over the 100 iterations 
of LOO cross-validations were as follows: Sn = 1, Sp = 0.99, 
ACC = 0.99 using the primary dataset, and Sn = 0.96, 
Sp = 0.99, ACC = 0.98 on the final dataset. Moreover, 
the models were classified as the CRC versus healthy 
individuals with an AUC of 1 and 0.99 using the 569 
DEMs and top three ranked miRNAs, respectively (Figure 
3). The details of calculations related to each of the SVM 
models are presented in Table S2. Furthermore, Table 1 
illustrates the parameters of the SVM models.

PPI Network and GSE Analyses
Bioinformatics analyses were performed using the 
miRWalk 2.0 database to predict DEMs-target 
interactions. Accordingly, a total of 10,745 unique genes 
were identified as validated target genes of the DEMs. In 
addition, the PPI network, which was based on the DEMs-
targets, and associated with CRC, was constructed. The 
PPI network contained 396 998 interactions between 
19 191 nodes. The MCODE plugin identified 91 clusters 
in the graph, 30 of which had seed nodes involved in the 
initial dataset (DEMs-targets). Accordingly, they were 
assumed as considerable modules in the PPI network. The 
characteristics of these 30 modules are demonstrated in 
Table 2. It should be noted that the nodes involved in a 
unique cluster usually participate in a common procedure, 
neither a BP nor a pathway (29,52). The BP and pathway 
enrichment analyses were performed using the ClueGO 
plugin and Reactome database (https://reactome.org/) 
(53), respectively, for the 30 critical clusters. According to 
the results, a total of 887 enriched pathways and 1005 BPs 
associated with CRC were identified. (Tables S3 and S4, 
respectively). In addition, a total of 9 MFs and 14 CCs were 
significantly affected in CRC. The list of enriched MFs 
and CCs are presented in Table 3 and Table 4, respectively. 
The network analyzer tool was utilized to identify proteins 

of potential importance to the CRC in the network. 
The average value of the degree, betweenness centrality, 
closeness centrality, and eccentricity for all the nodes 
in the network were calculated to be 41.37, 0.000111, 
0.3214, and 5.72, respectively. A total of 110 proteins had 
a betweenness and degree higher than 2-fold the average, 
besides having a closeness and eccentricity greater than the 
mean of the nodes in the graph; accordingly, they were 
considered as hub nodes in the PPI network associated 

Figure 2. A Total of 10 miRNAs in the Current Study With 
Considerable Coefficient Weight in the Primary SVM Model. Note. 
The x-axis corresponds to the miRNA ID. The y-axis represents the 
coefficient weight. SVM, support vector machine.

Figure 3. ROC Analysis Performed for the Evaluation of Classifier 
Models Established With the SVM Algorithm. The area under the 
curves were 1 and 0.99, using the (A) 569 differentially expressed 
miRNAs, and (B) top three ranked differentially expressed miRNAs 
based on their weight coefficient, respectively. Note. ROC, receiver 
operating characteristic; SVM, support vector machine.

Table 1. Parameters of the Support Vector Machine Models

Type of Dataset SVM-Type SVM-Kernel Cost Gamma Number of support Vectors

Using 569 DEMs C-classification radial 1 0.0017 71

Using top three ranked features C-classification radial 1 0.33 27

SVM, support vector machine; DEMs, differentially expressed miRNAs.

https://reactome.org/
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with CRC (Table S5).
 
Master Regulators for the Hub Genes
The Cytoscape software with the iRegulon plugin was used 
to predict the TFs related to the hub genes. Only TFs with 
an NES > 3.0 were considered to be statistically significant 
(54). Accordingly, there were 22 convincing TFs associated 

with CRC. The most enriched TF motif was CCAAT/
enhancer-binding protein delta (CEBPD) with an NES 
3.96. Furthermore, a total of 45 hub genes were regulated 
by signal transducer and activator of transcription 1 
(STAT1). The statistics of the significant master upstream 
regulators are presented in Table 5. In addition, the TF-
associated GRNs were constructed and merged. This 

Table 2. Characteristics of the 30 Significant Modules in the Protein-Protein Interaction Network Associated With Colorectal Cancer

Cluster no. Score No. of nodes No. of edges Seed (protein ID) Seed (gene ID) Seed degree

1 226.07 401 45227 Q7Z340 ZNF551 400

2 85.44 91 4408 P62263 RPS14 296

3 74.49 124 4803 P84103 SRSF3 198

4 34.15 136 2469 P03372 ESR1 867

5 26.63 161 2242 Q9UJV9 DDX41 167

7 13.69 413 3004 Q8WXA9 SREK1 92

14 5.56 10 25 Q0IIN5 VCP 15

25 3.50 206 414 Q9H496 TOIP2 71

29 3.39 143 296 Q02809 PLOD1 77

35 3.33 4 5 Q9P2N5 RBM27 40

38 3.24 30 59 O43525 KCNQ3 10

39 3.23 128 239 Q14188 TFDP2 22

45 3 3 3 P30511 HLAF 26

48 3 3 5 Q9Y3A0 COQ4 16

50 3 3 3 P13164 IFITM1 10

54 3 3 5 Q4G0X4 KCTD21 13

55 3 3 3 Q9UMR3 TBX20 10

61 3 3 3 Q9NUS5 AP5S1 2

65 3 3 3 Q9NX76 CMTM6 19

69 2.8 6 7 Q96MV1 TLCD4 15

70 2.75 89 133 Q15477 SKIV2 31

71 2.75 60 87 Q9Y6D6 BIG1 32

75 2.67 4 5 Q14721 KCNB1 24

76 2.67 4 5 Q14206 RCAN2 21

77 2.67 4 4 Q58F15 EPHA4 8

80 2.67 4 4 Q4ZG77 PSMD14 3

81 2.67 4 4 Q5VVC8 RPL11 3

Table 3. The Molecular Functions Analysis of DEMs-target Genes Associated With Colorectal Cancer

GO ID GO Term No. of Genes Percent

 GO:0005215 Transporter activity 513 6.40

GO:0045182 Translation regulator activity 27 0.30

GO:0038024 Cargo receptor activity 3 0.00

GO:0140110 Transcription regulator activity 610 7.60

GO:0003824 Catalytic activity 2652 33.00

GO:0098772 Molecular function regulator 491 6.10

GO:0060089 Molecular transducer activity 417 5.20

GO:0005198 Structural molecule activity 306 3.80

GO:0005488 Binding 3011 37.50

DEMs, differentially expressed miRNAs; GO, gene ontology.
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Table 4. The Cellular Component Analysis of DEMs-target Genes Associated With Colorectal Cancer

GO ID GO Term No. of genes Percent

GO:0044456 Synapse part 106 0.50

GO:0044425 Membrane part 1034 4.90

GO:0016020 Membrane 1829 8.60

GO:0045202 Synapse 112 0.50

GO:0044422 Organelle part 1699 8.00

GO:0044421 Extracellular region part 311 1.50

GO:0030054 Cell junction 83 0.40

GO:0031974 Membrane-enclosed lumen 588 2.80

GO:0032991 Protein-containing complex 1677 7.90

GO:0099080 Supramolecular complex 180 0.90

GO:0005576 Extracellular region 311 1.50

 GO:0005623 Cell 4899 23.20

GO:0044464 Cell part 4899 23.20

GO:0043226 Organelle 3430 16.20

DEMs, differentially expressed miRNAs; GO, gene ontology.

network contained 113 nodes and 398 edges (Figure 4).

Discussion
In the present study, the serum miRNA expression profiles 
from patients with CRC and healthy individuals were 
obtained from the GEO database and analyzed. According 
to the results, a total of 569 miRNAs were found to 
be statistically significant in the two groups using a 
multivariate OPLS analysis (P < 0.001). Furthermore, two 
SVM classifiers were designed using DEMs and the top 
three ranked miRNAs based on their weight coefficient in 
the primary model; the models distinguished CRC from 
those with healthy individuals over the 100 times repeat 
of LOO cross-validations with an AUC of 1 and 0.99, 

respectively. The established SVM classifiers demonstrated 
great potential for the future invention of a serum-based 
diagnostic test for CRC. Although the final SVM classifier 
we developed in this study was not as robust as the primary 
model, the biomarker signature for the second model 
contained only three miRNAs; this makes the diagnostic 
approach to be less time-consuming and costly. After 
identifying the DEMs-targets, a PPI network associated 
with CRC was built and analyzed using the MCODE, 
ClueGO, and network analyzer tool in the Cytoscape 
software, besides the Reactome database. Accordingly, 
there were 1005 BPs and 887 pathways significantly 
enriched in our study by Bonferroni correction for multiple 
comparisons (FDR < 0.05). The GO analysis also revealed 

Figure 4. Gene Regulatory Network. The green octagons represent transcription factors, and the pink elliptical nodes indicate the target hub 
genes in the protein-protein interaction network associated with CRC. Note. CRC, colorectal cancer.
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that 9 MFs and 14 CCs were significantly affected in CRC 
by univariate Wilcoxon Rank-Sum Test with Bonferroni 
correction utilizing the PANTHER database (FDR < 
0.05). In addition, we identified a total of 110 critical 
proteins, which play essential roles in the PPI network 
associated with CRC. Furthermore, GRN analysis was 
performed to verify the TFs involved in the regulation of 
the hub proteins in the PPI network, using the iRegulon 
plugin in the Cytoscape.

Reactome pathway analysis demonstrated that the genes 
involved in the most significant clusters in the PPI network 
were primarily associated with the “Regulation of activated 
PAK-2p34 by proteasome mediated degradation”, “FBXL7 
down-regulates AURKA during mitotic entry and in early 
mitosis”, and “SCF-beta-TrCP mediated degradation of 
Emi1” (Figure 5).

It is well-known that coordinated regulation of 
proliferation, cell survival, and apoptosis play an essential 
role in the progress and maintenance of multicellular 
organisms. The p21-activated protein kinases (PAKs) are 
implicated in cell survival and cell death (55,56). The 
p21-activated protein kinase 2 (PAK-2) can act as an anti- 
and pro-apoptotic factor depending on its mechanism of 
activation. Accordingly, full-length activation of PAK-2 
via the monomeric GTPases Cdc42 or Rac promotes cell 
survival. However, caspase activation of PAK-2 to the 
PAK-2p34 fragment contributes to the apoptotic response 
and therefore, under-expression of caspase-activated PAK-
2p34 may result in neoplastic growth (57). Lee et al (58) 
demonstrated that recombinant expression of PAK-2p34 
induced morphological changes characteristic of apoptotic 
cell death in different types of cell lines and promoted cell 

Table 5. A Total of 22 Master Regulators Identified in the Gene Regulatory Network Associated With Colorectal Cancer

TF NES Degree Targets

CEBPD 3.96 7 FLOT1, GMCL1, APOB, UBB, ARL6IP1, MAP1LC3B, CTSB

GATA3 3.82 20
PDE4DIP, MED23, FLOT1, GNAQ, ITSN1, SP3, PSMB2, SNX6, CTSB, USP2, PDK1, WT1, SNRPE, ERRFI1, FZR1, ECSIT, 
PLEC, ARL6IP1, ZNF526, JMJD6

GATA5 3.68 8 NOS3, APOB, GNA14, WT1, HLA-C, CHRM3, ERRFI1, CHRM1

CEBPB 3.6 9 ANXA1, CTSB, TJP2, GMCL1, SNRPE, PDE4DIP, PLEC, ERRFI1, FLOT1

PLAG1 3.57 22
GLP1R, USP2, RAB8A, CBX6, ECSIT, TFAP4, GNAQ, HLA-C, GMCL1, TJP2, CHRM1, MAPK8IP2, PEX5, CHRM3, CTNNA3, 
GNGT1, PLEC, ERRFI1, APOB, MMP9, TSC22D4, OTX1

STAT3 3.52 18
GNAQ, MYB, ANXA1, LNX2, LYBD3, PLAUR, MAP1LC3B, SAV1, AGTRAP, TSC22D4, SP3, RAD23A, PRNP, TJP2, FLOT1, 
CBX6, UBB, CTSB

HIVEP1 3.36 7 CREB3, RAB10, PDE4DIP, HLA-C, APOB, CHRM1, GMCL1

HSF1 3.26 7 ERRFI1, SKIL, HLA-C, FKBP4, ATP6V1B1, GNAQ, CACNA1A

EGR1 3.25 21
SKIL, CHRM1, TSC22D4, MMP9, CACNA1A, EPS15, GLP1R, ODF2, FZR1, ERRFI1, PDE4DIP, ECSIT, HLA-C, PLEC, ITSN1, 
WT1, SUV39H1, MYB1, CTSB, UPS2, MTNR1A

NF1 3.24 40
FKBP4, USP2, SRSF3, CHRM1, PSMB2, GNB5, SUV39H1, RAB10, KRT31, TSC22D4, ERRFI1, CDK8, CTDSPL, GNAQ, 
CTNNA3, MTNR1B, GNG5, VKOR, C1, SLX4, PRNP, MMP9, CTSB, SKIL, GLP1R, MED23, CBX6, WT1, PDE4DIP, 

MYF6 3.23 39
TFAP4, TSC22D4, HLA-C, SLAMF1, SRSF3, MED23, GNA14, TAZ, PEX5, MED21, ECSIT, ERRFI1, PIP4K2A, CDK15, EPS15, 
CACNA1A, ANXA1, CHRM1, APOB, GLP1R, CTNNA3, ITSN1, RAB8A, KRT31, CBX6, GNAQ, PSMB5, 

FOXC1 3.21 33
CHRM1, SP3, SRSF3, RAB10, CBX6, HLA-C, PSMB5, ECSIT, UBB, CACNAA1A, MMP9, ANXA1, USP2, TAZ, GLP1R, 
GNAQ, ERRFI1, MYB, MTNR1B, CTNNA3, PLEC, CTSB, ITCH, TTC1, GNB5, ITSN1, NOS3, SKIL, PIP4K2A, TFAP4

ELF5 3.19 33
A2M, MMP9, SNRPE, PDE4DIP, TJP2, CDIPT, ITSN1, GNGT1, CHRM1, GNB5, HLA-C, FKBP4, ERRFI1, AGTRAP, 
GNG5,CACNA1A, GNAQ, TSC22D4, SP3, SKIL, NOS3, ANXA1, USP2, CREB3, SAV1, TLR4, PIP4K2A, SLAMF1, WT1, 
MED23, ODF2, CTSB, KRT31

SIX4 3.16 17
MMP2, PLEC, KRT31, ECSIT, PRNP, CTSB, PDE4DIP, GNAQ, GLP1R, ANXA1, NOS3, TLR4, PLAUR, HLA-C, TJP2, CHRM1, 
MMP9

MECOM 3.14 9 SKIL, CTNNA3, USP2, MED23, GNAQ, PDE4DIP, MTNR1A, MTNR1B, MYB

UGP2 3.12 7 ATP6V1B1, USP2, CHRM1, PLEC, FZR1, TFAP4, CTSB

KAT2A 3.11 13 PDE4DIP, ITCH, PARP2, JMJD6, SAV1, SRSF3, SLAMF1, ERRFI1, CBX6, ZNF526, PSMB5, SYVN1, MED21

STAT1 3.1 45

CHMP4B, CACNA1A, CTNNA3, ODF2, GMCL1, PDE4DIPM ITCH, PSMC2, SNX6, EPS15, SNRPE, TSC22D4, PIP4K2A, 
HLA-C, TFAP4, WT1, SKIL, ERRFI1, ANX, A1, CTSB, MAP1LC3B, MYB, ARL6IP1, NOS3, CHRM1, UBE2L3, TTC1, GNAQ, 
TJP2, ITSN1, SP3, CDK15, RAB8A, USHBP1, LYPD3, PSMB5, SRSF3, ECSIT, FZR1, GNG5, PLEC, MMP9, USP2, RAB10, 
DDX46 

MSI2 3.05 6 HLA-C, TFAP4, CTNNA3, GNAQ, SRSF3, ANXA1

SIN3A 3.05 10 UBQLN4, MAPK8IP2, STX4, AGTRAP, CCHCR1, SYVN1, CREB3, TFAP4, ECSIT, PDEADIP

FOXD1 3.03 21
PLEC, CBX6, TFAP4, MED21, PDE4DIP, GNAQ, ANXA1, CACNA1A, MYB, CTSB, MMP2, SYVN1, CTNNA3, HLA-C, USP2, 
TJP2, MTNR1A, CHRM1, CHMP4B, SP3, PDK1

NR3C1 3.02 6 MTNR1A, USP2, SAV1, MED23, PLEC, GNAQ

TF, transcription factor; NES, normalized enrichment score.
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death in HeLa and CHO cells. In addition, Jakobi et al 
(59) showed that the concentration of caspase-activated 
PAK-2p34 is regulated by ubiquitination and degradation 
by the proteasome.

Aurora kinase A (AURKA) is a mitotic serine/threonine 
kinase that plays a role in the regulation of cell cycle 
progression (60). AURKA is associated with the centrosome 
and the spindle microtubules during mitosis; therefore, it 
plays an important role in different mitotic events such as the 
establishment of mitotic spindle, centrosome duplication, 
centrosome separation, maturation, chromosomal 
alignment, spindle assembly checkpoint, and cytokinesis 
(60,61). According to previous studies, overexpression of 
AURKA contributes to mitotic disturbance and neoplastic 
progression (62-64). Controversial roles have been 
reported for AURKA; activation and/or overexpression 
of AURKA were demonstrated  in early-stage/low-grade, 
as well as noninvasive ovarian tumors, suggesting that 
its aberrant expression could be considered as an early 
event in ovarian oncogenesis (65). In addition, low-grade 
patients illustrated higher AURKA expression than high-
grade patients in CRC (66). Moreover, overexpression 
of AURKA was associated with favorable prognosis in 
patients with metastatic CRC (67). Therefore, the exact 
roles of AURKA in tumorigenesis of CRC deserve further 
study (68).

Early mitotic inhibitor 1 (Emi1) is an inhibitor of 
ubiquitin ligase–anaphase promoting complex/cyclosome 

(APC/C) during mitotic and meiotic cell cycle (61, 69), 
resulting in the accumulation of cyclins A and B, as a 
consequence, preventing  re-replication during the S phase 
(70). It has been reported that depletion of Emi1 promotes 
DNA re-replication (71). Chao et al (72) determined the 
effects of inhibiting the expression of thymosin β4 (Tβ4) on 
normal intestinal epithelial cells. It is noteworthy that Tβ4 
is one of the proteins considered as a target for treatment 
of CRC. Chao et al (72) demonstrated that reduced 
expression of Tβ4 in IEC-6 normal rat small intestinal cells 
diminished the growth, which is associated with DNA 
re-replication caused by decreased expression of Emi1, its 
upstream activator, and transcription factor E2F1.

The PPI network analysis revealed that a total of 110 hub 
genes were considerably associated with the pathogenesis 
of CRC. Accordingly, PDK1, SNRPE, and GNB5 
demonstrated the highest degree of scores in the graph.

Pyruvate dehydrogenase kinase 1 (PDK1) is one of 
the most important enzymes in the glycolysis pathway 
contributes to a switch in metabolism from mitochondria-
based glucose oxidation to cytoplasm-based glycolysis. 
Several studies have demonstrated that PDK1 was 
upregulated in various solid tumors and hematological 
malignancies, including ovarian cancer, head and neck 
cancer, glioma, melanoma, and acute myeloid leukemia 
(73-77). Quin et al (78) demonstrated that overexpression 
of PDK1 was significantly associated with poor prognosis 
in CRC patients, and PDK1 knockdown resulted in 
reduced liver metastasis in both nude mice and immune 
competent mice. Quin et al (78) concluded that PDK1 
inhibition diminishes the survival of CRC cells in blood 
circulation through overexpression of anoikis.

Small nuclear ribonucleoprotein E is encoded by the 
SNRPE gene, and is involved in the core component of 
U small nuclear ribonucleoproteins, which are implicated 
in the pre-mRNA processing spliceosome. In addition, 
the encoded protein contributes to the 3’ end processing 
of histone transcripts. This protein has been considered 
as one of the targets in many human disorders, such as 
autoimmune disease systemic lupus erythematosus, and 
previous studies have linked between mutations in this gene 
and hypotrichosis (79-83). Anchi et al (84) demonstrated 
that SNRPE is upregulated in high-grade prostate cancer 
(PC) cells compared with normal prostatic epithelial cells. 
This was done by using qRT-PCR. In addition, knockdown 
of SNRPE expression by short interfering RNA (siRNA) 
led to the suppression of proliferation in PC cells. Anchi 
et al (84) suggested that SNRPE may be considered 
as new target for therapeutic aims of PC. However, the 
exact mechanism of SNRPE in the development of CRC 
remains unknown and needs further study in the future.

Guanine nucleotide‐binding protein subunit beta‐5 
(Gβ5) is encoded by the GNB5 gene (85). Gβ5 
interacts with G‐protein–coupled receptors leading to 
downregulation of central nervous system G‐protein 

Figure 5. Most Significant (A) Biological Processes and (B) Signaling 
Pathways Affected in CRC. The x-axis represents the name of the 
term. The y-axis corresponds to the – Log 10 of FDR. Note. CRC, 
colorectal cancer; FDR, false discovery rate.
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signaling pathway, and therefore, participates in several 
BPs including neurotransmission (86). It has been reported 
that GNB5 knockout in mice resulted in impaired 
neurologic, cardiac, and retinal function (87). Park et al 
(88) analyzed the gene expression data of CRC patients 
treated with cetuximab (CTX) monotherapy. The authors 
demonstrated a significant correlation between GNB5 
overexpression and poor prognosis in patients with CRC. 
In addition, GNB5 knockdown increased CTX sensitivity; 
therefore, the authors suggested that GNB5 may be 
considered as a potential target to combat CTX resistance. 
Moreover, Park et al (88) reported that upregulation of 
GNB5 leads to CTX resistance by modulating the Akt 
signaling pathway.

According to the results of the present study, several TFs 
were identified to act as a regulator of the hub genes in the 
PPI network, including STAT1 and CEBPD. 

STAT1 was demonstrated to regulate the expression 
of 45 of the hub genes utilizing the iRegulon plugin in 
Cytoscape software. Tanaka et al (89) studied the alteration 
in STAT1 in 736 CRC tissue specimens, including 614 
early stage and 122 advanced-stage patients. This was 
done using the immunohistochemistry technique and 
semi-quantitatively scoring. It was demonstrated that the 
overexpression of STAT1 in the cytoplasm of early-stage 
cases was significantly correlated with lower survival time 
in the microsatellite instability (MSI) subtype of CRCs. 
The authors suggested that STAT1 could be considered 
as a potential prognostic and diagnostic biomarker for 
early-stage MSI CRC. STAT1 is a master regulator for 
IFN-related intracellular signaling pathway and could be 
activated by several ligands in the cytoplasm, including 
interferon-alpha (IFN-α), IFN-γ, epidermal growth factor, 
platelet-derived growth factor, and interleukin 6. It has 
been reported that STAT1 plays multi-functional roles 
in the molecular biology of cancer. STAT1 can act as an 
anti-oncogenic molecule by overexpression of caspases 
(89-91), and down-regulation of the BCL2 family (89,92). 
In addition, it can act as a pro-oncogenic molecule in 
invasive breast carcinoma (89,93). Therefore, the exact 
mechanisms of STAT1 in CRC have not been fully 
elucidated (89) and needs consideration in future studies. 
However, according to the results of the study by Tanaka 
et al (89), a positive correlation was reported between the 
expression of STAT1, CD274, and PDCD1 in MSI CRCs. 
The authors speculated that the up-regulation of STAT1 
might induce CD274 overexpression, which results in 
an immunosuppressive microenvironment. Thus, they 
suggested that STAT1 may act as a pro-oncogenic factor in 
MSI CRC patients.

CEBPD was the most enriched TF with an NES 3.96. 
This protein significantly regulated 9 of the hub proteins in 
the PPI network, including ANXA1, cathepsin B (CTSB), 
tight junction protein ZO-2 (TJP2), germ cell-less 
protein-like 1 (GMCL1), small nuclear ribonucleoprotein 

E (SNRPE), phosphodiesterase 4D-interacting protein 
(PDE4DIP), plectin (PLEC), ERBB receptor feedback 
inhibitor 1 (ERRFI1), and flotillin-1 (FLOT1). It has been 
reported that CEBPD is a critical tumor suppressor factor, 
and the down-regulation of the protein was demonstrated 
in different types of malignancies, including breast, liver, 
and cervical cancer (94,95). In addition, CEBPD elevates 
DNA stability in the hole genome (94,96). However, 
further research is required to examine the CEBPD 
expression in CRC.

The present study had some limitations. The miRNAs 
profiled in our study were generated from GPL18941 
platform (3D-Gene Human miRNA V20_1.0.0), which 
probably only represents part of the miRNA populations. 
Therefore, the DEMs identified in this study may not 
represent all the DEMs in CRC. In addition, our results 
were only based on bioinformatics techniques. Thus, 
considerable in vitro and in vivo approaches are required 
to confirm these findings. Future studies should use more 
microarray datasets (e.g., gene microarray data sets) and 
compare the results with our findings. Besides, wet-lab 
approaches using large targeted cohorts are required to 
confirm these findings.

Conclusion
In conclusion, since miRNA has  remarkable  stability in 
the serum, it is considered as a possible biomarker for 
developing a non-invasive diagnostic  approach for CRC 
detection. Accordingly, accurate prognostic models were 
developed using distinguishing miRNAs derived from the 
multivariate statistical analysis and their weight coefficient 
in the primary SVM model. In addition, PPI analysis 
revealed 30 clusters with considerable seed nodes, which 
were previously identified as DEMs-targets and were 
associated with CRC. The GSE analysis revealed 1,005 
BPs, besides 887 pathways significantly affected in CRC. 
Investigating these BPs and pathways may elucidate the 
mechanism of CRC progression. PPI analysis identified 
110 nodes considered to be the most important genes 
associated with CRC according to their remarkable degree, 
betweenness, closeness centrality, and eccentricity. The 
GRN analysis significantly demonstrated 22 TFs for the 
110 hub genes. Accordingly, these selected hub genes and 
their master regulators may be considered as potential 
therapeutic targets for treating CRC. However, further 
molecular experiments are required to confirm the exact 
function of these identified genes in CRC. The DEMs-
target genes significantly affected 9 MFs and 14 CCs in 
CRC patients. In addition to the results of the present study, 
the SVM classifier can successfully distinguish miRNA 
profiles in patients with CRC and healthy individuals. 
OPLS analysis is also a robust statistical technique, which 
can significantly identify DEMs derived from microarray 
data. The results of the present study provided insights into 
the molecular mechanism of CRC, which may be useful 



 Avicenna J Med Biochem, Volume 8, Issue 2, 2020                                                              108

Saidijam et al 

in further investigations and be used to establish novel 
and non-invasive diagnostic tests. However, validation is 
required in the future.
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