
The hedgehog (HH) gene was first discovered in 
Drosophila for its role in embryonic development; 
however, it plays a crucial and conserved role in 

numerous processes of vertebrates, such as embryogenesis, 
epithelial-mesenchymal transition, and cellular 
development (1-3). Secreted HH ligands can diffuse 
through the extracellular matrix to act on distant cells 
(4). In this regard, three homologous ligands for HH have 
been identified in mammals, including desert (DHH), 
sonic (SHH), and Indian (IHH) HH ligands (5,6). The 
interaction of the SHH ligand with the Patched receptor 
(PTCH1) on recipient cells activates the smoothen (SMO) 
by relieving its suppression and subsequently activates 
transcription factors in the glioma-associated oncogene 
family (7). Recent findings have suggested that there is an 
interaction between the SHH pathway and other signaling 
pathways, including Wnt/β-catenin, transforming growth 
factor β, mammalian target of rapamycin, and notch (8).
Evidence implies that the disruption of HH signaling is 
effectively involved in developing cancers in various organs 
(9). In this regard, recent studies have revealed that patients 
with mutations resulting in the impaired activity of SHH 
signaling effectors Patched and SMO may develop basal-
cell carcinomas (10). On the other hand, an impairment 
in the pathway has been found to cause various metabolic 
disorders. It has been suggested that impairments in the 
HH signaling pathways may contribute to several lipid/
lysosomal storage disorder diseases, such as Niemann-
Pick C 1 and 2 (NPC1, 2) and mucopolysaccharidosis type 
II (Hunter disease) (10,11).
HH signaling as a morphogen signaling is tightly regulated 
with unique modifications. The modification of SHH 
with cholesterol, at the C terminus and palmitate at the 
N terminus, ensures the SHH trafficking to plasma 
membranes (12). Lipid modifications also enhance the 
SHH transporting across the plasma membrane for release 
extracellularly (13,14). Recent evidence suggests that the 

lipid moieties attached to SHH play an important role in the 
interaction between this ligand and the PTCH1 receptor 
(15). Interactions of the palmitoylated N-terminal of the 
SHH ligand with PTCH1 are crucial for the inhibition 
of PTCH1, thus triggering HH signaling via SMO (16). 
Therefore, inhibiting the PTCH1 receptor on SMO is lost 
in the presence of cholesterol and 7 -dehydrocholesterol-
derived oxysterols (17). However, the biding of synthetic 
and endogenous oxysterols with the extracellular cysteine-
rich domain can allosterically activate SMO (18), and 
cholesterol as an endogenous activator of SMO can 
stimulate SHH signaling independently (13). During the 
SHH signaling, SMO trafficking to the primary cilium is 
shown to be aided by cholesterol derivatives and oxysterols. 
This implies the crucial role of cholesterol and other lipids 
in the activation of the SHH signaling pathway in various 
organs. Owing to the importance of SHH signaling in 
metabolic disorders, it seems that cholesterol metabolism 
might play a critical role in the development of metabolic 
disorders by the interaction of SHH signaling.
Experimental studies demonstrated that the HH pathway 
ligand is overexpressed in non-alcoholic steatohepatitis 
(NASH) specimens. Additionally, it has been reported that 
the severity of liver disease is directly related to the activity 
of the SHH pathway in non-alcoholic fatty liver disease 
(19). However, studies on the liver tissue of patients with 
simple steatosis revealed that the SHH signaling pathway 
was downregulated in simple steatosis as compared to 
NASH-related cirrhosis (20). 
Taken together, the possibility of the lipid modification 
of SHH, PTCH, and SMO, the key signal transducers in 
the SHH signaling pathway, through different lipid species 
and cholesterol, might explain why lipid metabolism is 
associated with an impaired SHH signaling pathway and 
subsequently their roles in metabolic disorders. 
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