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Abstract

Acute myeloid leukemia (AML) is a hematologic malignancy that is characterized by impaired
proliferation and differentiation of hematopoietic stem cells, often leading to poor prognosis.
Identifying new therapeutic targets is crucial for improving treatment outcomes. Signal transducer
and activator of transcription 3 (STAT3) is a critical oncogene that is implicated in AML. In
addition, it is a transcription factor that is activated via phosphorylation by members of the
Janus kinase protein family and regulates the expression of several genes involved in oncogenic
pathways. This research reviewed studies evaluating the role of STAT3 in AML. This review study
investigated over 50 relevant articles focusing on STAT3-related genetic alterations, including
mutations (e.g., STAT3-RARa fusion) and single-nucleotide polymorphisms, such as rs1905339
(A>Q), 159909659 (G/A), and rs17886724 (T/C). It also evaluated current experimental and
clinical research on STAT3-targeted therapies, including compounds such as trametinib,
artesunate, OPB-51602, napabucasin, atovaquone, ortho-topolin, and W1046. STAT3 genomic
variations were linked to AML prognosis and disease progression. According to preclinical and
clinical studies, inhibiting the expression of STAT3 could impair the survival of AML blasts and
improve the prognosis of patients. However, there is currently no approved, effective STAT3-
targeting therapy available for AML patients. Overall, STAT3 dysfunction plays a pivotal role in
the progression of AML. Nonetheless, further investigations into STAT3-targeted therapies may
lead to the development of effective compounds, offering improved prognosis and treatment
strategies for AML patients.
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Background

Leukemias are a group of multifactorial disorders
caused by the uncontrolled proliferation of bone
marrow hematopoietic lineages, which occur after
the accumulation of mutations and chromosomal
abnormalities. In addition, acute myeloid leukemia
(AML) is a common hematological malignancy that is
featured by impaired proliferation and differentiation of
myeloid progenitor cells or hematopoietic stem cells and
the accumulation of immature blasts in the bone marrow
and peripheral blood (1). According to the World Health
Organization standards, the diagnosis of AML is based
on cytogenetic, morphological, and immunological
changes and molecular characteristics. Despite the high

prevalence of this malignancy in old age (65-70 years
old), many cases of pediatric AML have been reported
as well. Chromosome abnormalities are observed in 50-
60% of AML cases, and these abnormalities are the basis
of different challenges, such as resistance to treatment,
recurrence, and reduced prognosis of patients (1-3).
AML is usually characterized by rapid progression and
genetic heterogeneity with a poor prognosis and therapy
resistance (4). It is associated with an overall 5-year
survival rate equal to 25%. Although these cases and
chemotherapy challenges (e.g., bone marrow niche or
serum trace element alterations) are considered obstacles
to the treatment of the disease, the identification of
important and common molecular markers in the process
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of pathogenesis and development of the disease to target
therapy (5-8) will yield promising results.

Molecular markers are biomarkers that appear due
to differences in the expression and function of genes
compared to normal cells. Due to their presence in
signaling pathways and other cellular mechanisms,
these markers are highly essential in the progression
of malignancies, so that drug compounds, such as
Fedratinib (a strong inhibitor of the Janus kinase/signal
transducer and activator of transcription [JAK/STAT]
signaling pathway), have led to a favorable prognosis
in 78% of AML cases (6). This vital signaling pathway
(JAK-STAT signal transmission pathway) includes many
molecular markers of different diseases. STAT proteins,
important members of this key pathway, play an essential
role in various biological functions, including cell
proliferation and survival, angiogenesis, apoptosis, and
inflammation. Accordingly, aberrant STAT activation has
been widely reported in some human diseases, especially
immunodeficiency, inflammation, cancers, and other
proliferative disorders (9). The function of STAT proteins
is generally influenced by their association with JAK family
proteins, which are receptor-associated tyrosine kinases.
These enzymes include JAK1, JAK2, JAK3, and TYK2 in
mammals (10). When cytokines or growth factors bind to
cell membrane receptors, these enzymes phosphorylate
and activate a wide range of STAT family proteins, such
as STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and
STAT6. The family has a common molecular topology that
is organized in a special way (10). It is noteworthy that
the STAT protein family must be dimerized to regulate
gene transcription and be transported to the nucleus
after activation (2). STAT3 is a member of this family
that acts as an oncogene in a wide range of solid tumors,
including breast, prostate, lung, pancreatic, colorectal, and
hematological malignancies. In addition, several studies
demonstrated a significant increase in the expression of
STAT3 in AML samples compared to the control group
(about 44%-76% of the initial samples of AML patients
have shown increased activation of STAT3 and STAT5a/b
phosphorylation). Further, previous research reported
patients with abnormal phosphorylation in the STAT3
protein found in AML samples. Its extent is related to
interleukin (IL)-6 signaling (11). Likewise, Shagerdi
Esmaeli et al confirmed the role of homeobox transcript
antisense intergenic ribonucleic acid (a long non-coding
RNA) in AML proliferation by increasing the expression
of STAT3 (12). The STAT3 protein has an important
role in processes such as tumor progression, metastasis,
and angiogenesis. Its antagonists considerably affect
pathogenesis inhibition. Considering that this protein is
malignant, existing studies indicate that the inhibition of
STAT3 expression is a treatment for some malignancies
(e.g., lung, colorectal, prostate, and leukemia). The
upcoming review article examines the difference in the
expression, genetic variations, ontology, and targeted
therapy of STAT3 in AML in order to better understand

this leukemia’s pathogenesis and help future studies
expand its targeted therapy.

Basic Function and Activity of Signal Transducer and
Activator of Transcription 3 Pathways and the Survival
or Apoptosis of Blast Cells

The STAT protein forms part of a crucial intracellular
pathway that interacts with external signaling molecules,
including cytokines (e.g., IL-6, IL-27, IL-31, and IL-22),
platelet-derived growth factor, leukemia inhibitory factor,
and cardiotrophin-like cytokine factor 1. Moreover,
their receptors interact and lead to the regulation of gene
transcription. STAT family proteins have several amino
acids between 750 and 850. Furthermore, STAT3 has 770
amino acids, and its coding gene is located at position
17q21. All STAT proteins act similarly and perform many
vital functions in the cell. One of their most distinctive
features is the Src homology 2 (SH2) domain, located at the
protein’s C end (13). The SH2 domain (Figure 1) is required
for several steps in STAT signaling because it recognizes and
binds phosphotyrosine motifs, allowing for the combination
of extracellular chemicals with the cell membrane receptor
responsible for signal transduction (2). In addition,
activating the JAK protein facilitates recognition and
binding (2). During JAK-STAT signaling, the binding of the
extracellular ligand leads to its conformational change, and
this structural change is the basis for the binding of the JAK
family intracellular kinases. After binding to the receptor,
JAK leads to the binding of STAT3 to this receptor region
through the phosphorylation of its intracellular domain.
After STAT3 binds to the receptor, JAK phosphorylates
its SH2 domain from tyrosine 705 (Y705). The STAT3
homodimer or STAT3-STAT1 heterodimer is formed as a
result of this phosphorylation. The resulting dimer will act
as a transcription factor by crossing the nuclear membrane
and binding to the TTCN3GAA sequence (Figure 1).
Additionally, STAT3 regulates the expression of important
genes in cell cycle growth (progression), genes encoding
cell cycle checkpoint proteins, and apoptosis. This protein
will also decrease the expression of genes encoding cell
cycle checkpoint proteins (e.g., P53, P21, and P27) but will
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Figure 1. The JAK-STAT Signaling Pathway. Note. JAK: Janus kinase; STAT3:
Signal transducer and activator of transcription 3
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increase the expression of genes involved in cell growth
(e.g., cyclins D1, D2, D3, A, and B, Cdc25A, and Cdc2). On
the other hand, STAT3 leads to a decrease in the expression
of genes involved in apoptosis (e.g., -XI, IAPs, and Mcl-1).
In addition, according to available studies, this protein will
lead to the expression of SLC1A5 by the MYC gene. It also
plays a significant role in oxidative phosphorylation and
is effective in the pathogenesis of leukemic cells. Based on
the studies, the B isoform, unlike a, acts as an anti-tumor
agent in such a way that the expression ratio of STAT3 /o is
related to the increase in the overall survival of patients (14-
16). Therefore, to achieve the appropriate treatment, the a
isoform of this protein should be antagonistic.

Activation Cycle of Signal Transducer and Activator of
Transcription 3

During signal transduction, a STAT protein becomes
tyrosine-phosphorylated by a member of the JAK
family. Tyrosine-phosphorylated STAT proteins then
dimerize through their SH2 domains. The STAT3 dimer
subsequently translocates into the nucleus, where it acts
as a transcription factor. The activation of the STAT3
pathway is a transient process that is terminated by several
negative regulators. These regulators may inhibit the
pathway or directly inactivate phosphorylated STAT3. In
tumor cells, however, such regulators are often inactive or
unable to effectively suppress the pathway. The negative
regulators of STAT3 comprise several groups of proteins
with diverse mechanisms of action (17).

The protein inhibitor of activated STAT (PIAS) family
consists of genes sharing approximately 40% sequence
homology. All PIAS genes encode proteins containing
a conserved zinc finger domain in their central region.
These proteins negatively regulate STAT3 and various
signaling pathways by blocking deoxyribonucleic acid
(DNA) binding, activating co-repressors, and facilitating
SUMOylation. Furthermore, PIAS proteins can bind to
STAT3 dimers and mediate their inactivation. Notably,
PIAS3 primarily binds to STAT3 and is undetectable in
various malignancies (18-20).

The suppressor of cytokine signaling family includes
eight SH2 domain-containing proteins that act as negative
regulators of the JAK/STAT pathway. Hypermethylation
and inactivation of suppressor of cytokine signaling 1 have
been reported in AML; its activation suppresses leukemia
cell growth (21,22).

Protein tyrosine phosphatases are another group
of STAT3 inhibitors. This family comprises several
phosphatases that dephosphorylate phospho-tyrosine
residues in their substrates. Considering that tyrosine
phosphorylation is the key activation mechanism of
STATS3, protein tyrosine phosphatases serve as essential
negative regulators of this pathway (20).

Activity of Signal Transducer and Activator of
Transcription 3 Signaling Pathways and Survival or
Apoptosis of Blast Cells

STAT3 in acute myeloid leukemia

Some studies have identified the STAT3 protein as a
significant oncogene responsible for 70% of malignancies.
This issue is important in regulating the expression of
many genes encoding anti-apoptotic and growth factors by
this transcription factor (23,24). Reducing apoptosis and
increasing the survival of leukemic blasts are of interest;
in such a way, inhibiting the expression of this protein
using small interfering RNA will lead to the stimulation
of apoptosis in AML blasts (10,25). It will increase the
survival and proliferation of leukemic blasts. However, the
exact mechanism of this process in AML is unknown due
to the lack of sufficient understanding of STAT3 targets.
However, the association of this protein with patients’
poor prognosis has been proven. In some studies, deletion
mutation and lack of the STAT3 gene product have led to
the increased differentiation of hematopoietic stem cells
into cells such as macrophages and neutrophils, indicating
the important role of the protein in maintaining the
fundamentality of bone marrow cells. Moreover, several
studies demonstrated increased STAT3 phosphorylation
in several malignancies. Conversely, most of these
changes inhibit tumorigenesis and processes promoting
malignancy. Although most STAT3 phosphorylations are
anti-tumor, Y705 phosphorylation (abundant in AML)
will lead to the increased stemness of cells (26).

Structure of Signal Transducer and Activator of
Transcription 3

The STAT3 polypeptide consists of 770 amino acids and
six conserved domains, including the N-terminal domain,
coiled-coil domain, DNA-binding domain, linker domain,
SH2 domain, and C-terminal domain (Figure 2). These
domains have significant roles in STAT3 functions. The
N-terminal domain mediates the binding of STAT3 or
other proteins, leading to its dimerization, tetramerization,
or formation of heterodimerized complexes. These
binding activities mediate DNA binding, localization, and
transcription regulatory effects of STAT3 (17). In addition,
processes such as receptor binding, phosphorylation,
DNA binding, and dimerization are mediated by the
coiled-coil domain (27). The tyrosine residue, which is
mentioned as the phosphorylation target of JAK, is part
of the C-terminal domain (also referred to as the trans-

Figure 2. The Three-Dimensional Structure of STAT3. Note. STAT3: Signal
transducer and activator of transcription 3. Source. The PDBe--KB Data
Bank (https://www.ebi.ac.uk/pdbe/pdbe-kb/)
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activation domain) (28).

Transcriptional Targets of Signal Transducer and
Activator of Transcription 3

In the current study, the TFlink database (https://tflink.
net/) and available literature were used to identify
the transcriptional targets of STAT3. The previously
identified transcriptional targets of STAT3 are depicted in
Figure 3 (29).

Genetic Changes of Signal Transducer and Activator
of Transcription 3 and Their Effect on Acute Myeloid
Leukemia

Considering the important role of the STAT3 protein
in different cellular processes, the strong impact of
genetic variants of this protein on the pathogenesis of
AML is not far from expected. Generally, mutations and
polymorphisms are the most essential changes in genetic
sequences. Mutations include any genetic changes in gene
sequences that affect people’s phenotype. On the other
hand, polymorphisms are alterations without an obvious
impact on the phenotype and have a high frequency in the
human population (30).

Mutations

Signal Transducer and Activator of Transcription 3-
Retinoic Acid Receptor Alpha Fusion

Mutations are one of the most fundamental causes of
many malignancies and include various types (e.g., point
mutations, deletions, insertions, or fusions). The gene
fusion between RARA and PML is one of the vital types
of gene fusions in AML. This mutation has an effective
role in the occurrence and progression of the pathogenesis
of the AML M3 subgroup. There are also cases of this
type of leukemia with t(15;17)(q22;q12) chromosomal
translocation (31,32). According to the study by Yao

Figure 3. Genes Targeted by STAT3. Note. STAT3: Signal transducer and
activator of transcription 3. Source. The TFlink database (https://tflink.net/)

et al, the STAT3-RARA gene fusion is one of the gene
fusions observed in some M3 AML patients without
commonly expressed mutations. In this study, researchers
investigated the mentioned fusion using a whole-genome
sequencing technique in 2 patients with acute promyeloid
leukemia. The intended fusion leads to the connection
of the functional domains of both genes at the protein
level and increases the rate of homodimerization and
excessive activation of proteins. According to studies,
samples containing this fusion are sensitive to all-trans
retinoic acid (33).

Polymorphisms

Polymorphisms are a large group of human genomic
variations that have a frequency of more than 1% in
the human population. Unlike mutations, they do not
have an obvious and direct effect on people’s traits. The
importance of these changes and their investigation in
the field of oncology is related to their impact on people’s
susceptibility to various diseases, individual differences
in response to multiple treatments, and differences in
the immunological responses of individuals in multiple
diseases (30). Considering the important role of STATs
in the pathogenesis of various cancers, it is suggested that
researchers evaluate the effect of polymorphisms in these
genes on the prognosis and pathogenesis of cancers. For
example, Xu et al indicated that the rs1905339 (A>G)
polymorphism in STAT3 will lead to an increased risk
of breast cancer (34). They investigated the relationship
between single-nucleotide polymorphisms in the STAT3
gene (including rs9909659G/A and rs17886724T/C) and
the prognosis of patients with AML and found that the
TC/CC genotype of rs17886724 has a higher frequency
than the T/T genotype in the group with poor prognosis.
In addition, Chen et al. and Zhong et al reported that the
GG genotype of r$9909659 significantly reduces patients’
recovery rate (35,36). However, regarding nucleotides in
genes related to the immune system, Liu et al failed to
prove the relationship between STAT3 polymorphism and
the prognosis of AML patients (37).

Signal Transducer and Activator of Transcription 3 as a
Therapeutic Target in Acute Myeloid Leukemia

STAT proteins have a dual function in the cell, acting as a
messenger between the cell surface and the nucleus while
being directly involved in transcriptional regulation.
Considering the important upstream role of STAT3 in
metabolism, cell division, proliferation, and inhibition of
myeloid differentiation, its inhibition can be regarded as
a suitable treatment strategy for AML patients, as many
studies have been conducted in this regard (Table 1)
(5). For example, Minus et al inhibited STAT3 in AML
xenograft cells using naphthalene sulfonamide and
hybrid sulfonamide-rhodium (38). Likewise, Amaya et al
used SF25 as an effective antagonist of the DNA binding
domain in STAT3 (15). They also concluded that the
inhibition of this protein leads to a decrease in oxygen
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Table 1. Recently Formulated Anti-STAT3 Agents

STAT3 in acute myeloid leukemia

Agent Name Compound Targeting Mechanism Effect AML Subclass/Cell Line Research
Reducing the gene This agent will some AML and MDS cell lines
AZD9150 Antisense ex| ressifn b gtar etin increagse hematopoietic N S e Shastri et al (42)
oligonucleotides p ylargetng 10 hematop MV411, KG1, MOLM13, KT1,
the gene sequence differentiation in AML.
and CMK
Enhancing the STAT3 Increasing STAT3
Trametinib Small molecules [eyel n combmgt]op s necessary for the HL60 cell line Lu etal (50)
with all-trans retinoic differentiation of the
acid HL60 cell line.
. It increases apoptosis . .
Artesunate Small molecules Reducn":g STATS by activating caspase THP-T ?e” hng (acute monocytic Tanetal (51)
expression leukemia cell line)
3 and 8.
Small molecules from  Inhibiting the STAT3
3aa naphthalene phosphorylation through It increases apoptosis.  Kasumi-1 human AML cells Minus et al (38)
sulfonamide inhibitors G-CSF
Curcumin- S s
Thalidomide Small molecules Inh1b|t|r'1g USRS It increases apoptosis. U937 and KG-1 cell lines Mohammadi Kian et
expression al (39)

combination

OPB-51602

Napabucasin

STAT3 decoy
oligodeoxynucleotide

Atovaquone

Ortho-Topolin

W1046

Small molecules

Small molecules

Oligonucleotides

Naphthoquinone-

Based small molecule

A cytokine secreted
from m Populus x
robusta leaves

Small molecule

Inhibiting the STAT3
phosphorylation

Inducing DNA damage

Attaching to DNA-
binding domain of
STAT3

Decreasing STAT3
activation

Inhibiting the STAT3
phosphorylation

Decreasing STAT3
activation

It clarifies the
effectiveness of OPB-
51602.

It inhibits the STAT3
pathway.

It inhibits STAT3
transcriptional activity.

A clinical trial on patients with
AML M4, M2, and M6

THP-1, U937, OCI-AML3, and
Molm-13 cell lines

M1, M4, M5, AML-MLD, and
AML-NOS

Ogura et al (40)

Bi et al (41)

Zhang et al (43)

It reduces cell survival ~ THP-1, MV4-11, MOLM3, NB4, )L(?:nzt;'al i Minus
and proliferation. Kasumi, HL60, KGL, and HEL et al (38,44, 45)

It increases apoptosis.  HL-60 cell line Wang et al (48)

It reduces V-domain

Ig suppressor of T MOLM13 and MV4 Mo et al (49)

cell activation gene
expression.

Note. AML: Acute myeloid leukemia; MDS: Myelodysplastic syndrome; STAT3: Signal transducer and activator of transcription 3; Ig: Immunoglobulin.

consumption rate in the sample. In such a way, inhibiting
this protein specifically leads to the death of leukemic stem
cells without affecting the life of hematopoietic stem cells.
Likewise, Mohammadi Kian et al confirmed the negative
effect of the thalidomide-curcumin combination on the
survival and proliferation of KG-1 and U937 cell lines by
reducing STAT3 expression (39). Similarly, Ogura et al,
in their phase I clinical trial, utilized oral OPB-51602 to
inhibit STAT?3 in patients with hematologic malignancies
with a history of relapse or resistance to treatment with
a “3+3” intensification design. Although they found no
clear therapeutic effect, a stable condition emerged in
2 patients with AML (40). In their in vitro and in vivo
study, Bi et al inhibited AML cell lines in the laboratory
and animal models using BBI608 and indicated that
this compound inhibits the STAT3 signaling pathway
(41). In their study, Shastri et al, in addition to reporting
the negative effect of increased expression of STAT3 in
blood malignancy sufferers, succeeded in stimulating
the differentiation and inhibiting the pathogenesis of
AML cell lines and other malignancies using the STAT3
antisense oligonucleotide inhibitor (AZD9150) (42).
Zhang et al also used small interfering RNA binding
to the CpG island, which affected STAT3 expression

(CpG-STAT3dODN) in limiting AML cell lines. Based
on their results, CpG-STAT3dODN can be a suitable
candidate for inhibiting the function of STAT3 in AML
and other blood malignancies (43). According to existing
studies, naphthoquinone and its derivatives also have
inhibitory and negative effects on AML cells (44). One
of the important targets of these compounds is STAT3.
For example, Xiang et al concluded that atovaquone can
prevent the phosphorylation and activation of STAT3
by acting as an inhibitor (45). Similarly, Delebinski et al
evaluated the effect of ViscumTT (mistletoe plant extract)
on AML cells. During this study, they noticed the negative
impact of this compound on AML cells (46). According
to the results of research by Kleinsimon et al, Viscum TT
acts as an inhibitor of STAT3 phosphorylation, so that this
function may lead to the limiting effect of the mentioned
drug on AML blasts (47). Cytokine secreted from Populus
x robusta (ortho-tooling riboside) can also be investigated
as a suitable therapeutic agent in AML cells due to the
stimulation of myeloid differentiation by reducing the
amount of phosphorylated STAT3 (48). Mo et al observed
a significant increase in the expression of the V-domain
immunoglobulin suppressor of T cell activation (VISTA)
and the correlation of the expression of this protein with
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the expression of STAT3 in AML samples; this is because
of the hyperactivation of STAT3 due to VISTA activity.
These researchers succeeded in increasing T-lymphocyte-
mediated cell death in AML by inhibiting VISTA with the
help of anti-VISTA mAb. In this study, W1046 was also
utilized as a strong inhibitor of STAT3 (49).

Signal Transducer and Activator of Transcription 3
Interactions

The interaction of STAT3 with other proteins is also
important because of the effect of the interacting protein
on STAT3. According to the data available in the STRING
(https://string-db.org/) and GeneMANIA (https://
genemania.org/) databases, some important proteins
(Figures 4 and 5) interact with STAT3. These interactions
can be essential in AML. These proteins include CREBBP
(CREB binding protein), CDKNI1A (cyclin-dependent
kinase inhibitor 1A), CCR1,2,and 5 (C-C motif chemokine
receptor 1, 2, and 5), SRC (SRC proto-oncogene, non-
receptor tyrosine kinase), BHLHE40 (basic helix-loop-
helix family member e40), EP300 (E1A binding protein
p300), PRKCD (protein kinase C delta), NMI (N-myc and
STAT interactor), and EGFR (epidermal growth factor
receptor) (51-62).

CREBBP is a ubiquitously expressed protein that is
involved in the co-expression of transcription factors
and chromatin remodeling. This protein plays a vital
role in embryonic development, growth control, and
hematopoiesis. It also contributes to the pathogenesis
of AML. For instance, Assem et al mentioned the
dysregulation of CREBBP in de novo AML (63,64). On

Figure 4. The Protein-Protein Interaction Network of the Mentioned Genes
Associated With STAT3

Note. STAT3: Signal transducer and activator of transcription 3. Source. The
STRING database (https://string-db.org/)

the other hand, CREBBP has a paralog called EP300. This
histone acetyltransferase participates in various cellular
processes. CREBBP/EP300 maintains hematopoiesis; thus,
the malfunction of this complex acts as a leukemogenic
factor in some AML cases (65).

CDKNI1A (p21) is another protein that interacts with
STATS3. This protein is a master regulator of phagocytosis
in acute leukemia. Macrophages inhibit SIRPa receptors
by secreting p2l. SIRPa are phagocytosis inhibitors
in leukemic cells. Hence, p2l1 positively regulates
phagocytosis in leukemic cells (66).

Hu et al evaluated the effect of Src inhibitors on the blasts
of AML. They found that Src mediates the cytoprotective
accumulation of myeloid cell leukemia sequence 1
and induces transcription via STAT3 in leukemic cells.
Therefore, Src inhibitors potentiate the activity of myeloid
cell leukemia sequence 1 antagonists (67).

Conclusion

Due to its important role in cell proliferation and
survival, STAT3 is a key factor in the pathogenesis of
AML. This transcription factor is a member of the STAT
family. Moreover, STAT3 is tyrosine-phosphorylated by
a kinase family called “JAK” during various signaling
pathways. Phosphorylated STATs dimerize and regulate
the expression of various genes. Due to the functions
of STAT3, its hyperactivation, variation, and inhibition
affect cell survival and patient prognosis in AML. For
instance, the dysfunction of STAT3 regulators, leading
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56 | Avicenna ] Med Biochem. 2025;13(1)


https://string-db.org/
https://genemania.org/
https://genemania.org/
https://string-db.org/
https://genemania.org/

to its hyperactivation, has been proven in malignancies.
In addition, various anticancer agents act as inhibitors
of STAT3. Despite its important roles, the underlying
mechanism in the leukemogenic effect of STAT3 is not
completely clear. Accordingly, future studies should focus
on this important marker as a pathogenesis factor and a
therapeutic target in AML.
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