
Background
Hemophagocytic lymphohistiocytosis (HLH) is a 
syndrome of immune activation (1) that may occur in 
people with a genetic predisposition or de novo. The 
aggressive immune activation and tissue destruction 
observed in HLH are life-threatening (1). Prompt 
identification and early initiation of treatment can 
save lives. An understanding of HLH pathophysiology 
is still evolving. Excess immune activation and tissue 
destruction in HLH are well known. The biochemical 
basis of HLH has recently been explored, leading to the 
discovery of many important cytokines and chemokines 
in the pathophysiology of HLH. These molecules attract 
new possible therapeutic targets in HLH treatment. This 
review focuses on recent advances in the biochemical basis 
of HLH and its clinical implications.

The Histiocyte Society described the first standard 
definition of HLH in 1994 as part of the HLH-94 clinical 
trial (2). This definition was revised later in 2004 for 
the HLH-2004 trial (3). Both HLH-94 and HLH-2004 
criteria and treatment protocols are based on paediatric 

trials and thus lack validation in the adult population (2). 
Recently, the American Society of Hematology published 
recommendations for HLH diagnosis and management 
in adults (4). Historically, HLH has been divided into 
primary or familial and secondary subtypes. The primary 
HLH is inherited and presents in the first year of life. 
It is lethal without treatment. On the other hand, the 
secondary HLH presents later in life, triggered by various 
infections, autoimmune diseases, or malignancies. 
Recent data indicate that even secondary HLH may have 
genetic risks, thus blurring this rigid division. The North 
American Consortium for Histiocytosis recommends 
classification based on the etiology, which may be more 
practical and has greater implications for management 
(5). This group has an interesting viewpoint on the 
classification of HLH into HLH syndrome, HLH disease, 
and HLH disease-mimics. The HLH syndrome includes all 
patients meeting consensus diagnostic criteria. When the 
distinctive immune regulation remains the core problem, 
and they are likely to benefit from immunosuppression, 
it is called ‘HLH disease’. Conditions that may have the 
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Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome characterized by 
excessive cytokine activation. Its treatment remains extremely limited, with high mortality. 
Recent research into its pathogenesis has revealed the major role of cytokines, such as interferon-
gamma (IFN-γ), tumor necrosis factor-alpha, interleukin-1 (IL-1), IL-6, and IL-18. These cytokines 
may also help identify HLH in the early stage or predict HLH in high-risk patients in the future. 
Both animal and human research provide evidence of the role of biochemical mediators in HLH. 
In addition, the interplay between cytokines and cells in the pathogenesis of HLH has opened 
up new targeted therapeutics. These treatment alternatives are being tried for the primary and 
secondary forms of HLH, with promising results. Emapalumab, an anti-IFN-γ monoclonal 
antibody, has been widely studied in HLH with favorable results. Anti-IL-1 receptor antibody 
(anakinra), anti-IL-18 neutralizing molecule (tadekinig-α), and anti-CD52 monoclonal antibody 
(alemtuzumab) are among the newer drugs in the pipeline for the treatment of HLH. Small 
molecule inhibition beyond receptor activation in cells has previously had immense success in 
treating spondylarthritis and leukemia. Ruxolitinib, a Janus kinase inhibitor, also demonstrated 
positive outcomes in HLH treatment. With these emerging treatment options, the future outlook 
for HLH is moving toward a promising new horizon. 
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Interleukins
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HLH pattern, but require entirely different treatment, 
are termed ‘HLH disease-mimics’. This classification 
removes several ambiguities noted in the dichotomous 
classification into primary and secondary HLH. It helps in 
the cautious exclusion of conditions that may be harmed 
by immunosuppression (e.g., infections and malignancy). 
It further brings to mind the possibility of mutations as 
a risk factor in several environmentally triggered HLH, 
which were previously lumped into the umbrella of 
secondary HLH (5).

International studies quote an incidence of 1 in 50,000 
live births for familial HLH (6,7). Data on the incidence 
and prevalence of HLH obtained from India are severely 
lacking. A retrospective analysis from an intensive care 
unit setting in a tertiary care hospital reported a prevalence 
of 1.04% (8). Another retrospective analysis demonstrated 
that the characteristics of molecularly diagnosed familial 
HLH across 20 centres in India had 101 patients over 10 
years (1). The cost of genetic analysis limits diagnosis, 
and HLH may be underdiagnosed in even tertiary care 
settings in India. 

HLH can have variable manifestations, and individual 
symptoms can be observed in various other diseases, 
making the diagnosis challenging. Fever, the deterioration 
of the general state, splenomegaly, hepatomegaly, 
lymphadenopathy, and bleeding are among the most 
common manifestations of HLH (9). Other symptoms 
include hyperferritinemia, hypertriglyceridemia, 
hypofibrinogenemia, pancytopenia, hemophagocytosis 
in the bone marrow, and elevated soluble CD25 (sCD25, 
where CD is the cluster of differentiation) levels. The HLH-
score has been validated in predicting an individual’s risk 
of having reactive hemophagocytic syndrome (10). The 
HScore is a validated diagnostic tool designed to estimate 
the probability of HLH in patients with hyperinflammatory 
symptoms. It incorporates nine clinical and laboratory 
parameters, including fever, organomegaly (splenomegaly 
or hepatomegaly), cytopenias (affecting two or more 
lineages), hypertriglyceridemia, hypofibrinogenemia, 
hyperferritinemia, elevated aspartate aminotransferase, 
hemophagocytosis on bone marrow examination, and 
elevated sCD25 levels. Each parameter is assigned a 
weighted score, and the cumulative total helps clinicians 
assess HLH likelihood. In the original study, the 
probability of having hemophagocytic syndrome ranged 
from < 1% with an HScore of ≤ 90 to > 99% with an HScore 
of ≥ 250 (10).

HLH is diagnosed based on the patient’s history, clinical 
judgement, and the HLH-2004 diagnostic criteria (3, 11).

Immunopathology of Hemophagocytic Lymphohistiocytosis
HLH is a life-threatening hyperinflammatory syndrome 
driven by dysregulated immune activation, resulting in a 
cytokine storm that causes widespread tissue damage and 
multi-organ failure. This article primarily focuses on the 
biochemical mediators of HLH, particularly the role of 
cytokines in its pathogenesis; however, first, it provides a 

concise overview of the immunopathological mechanisms 
to contextualise these mediators. This section elucidates 
the roles of key immune cells, the hallmark process of 
hemophagocytosis, and the diverse triggers contributing 
to HLH pathogenesis, thereby integrating insights from 
recent studies to provide a comprehensive understanding.

Key Cellular Players
The immunopathology of HLH is characterized by the 
uncontrolled activation of macrophages, natural killer 
(NK) cells, and cytotoxic T lymphocytes (CTLs), which 
all trigger a hyperinflammatory state.

Macrophages
Hyperactivated macrophages are central to HLH, 
presenting antigens to lymphocytes and secreting excessive 
pro-inflammatory cytokines, such as interleukin-1 (IL-1), 
IL-6, and tumor necrosis factor-alpha (TNF-α), which 
amplify inflammation and cause severe tissue damage 
(12–14). This cytokine storm is a hallmark of HLH, 
leading to systemic inflammation and organ dysfunction. 
Recent studies have highlighted that macrophages also 
produce autoantibodies and immune complexes, further 
exacerbating immune activation.

Natural Killer Cells and Cytotoxic T Lymphocytes
NK cells and CD8 + CTLs normally eliminate infected 
or malignant cells via perforin-mediated and granzyme-
mediated cytotoxicity. CTLs act through major 
histocompatibility complex (MHC) class I-restricted 
mechanisms, while NK cells operate independently of 
MHC restrictions. In HLH, these cells exhibit impaired 
cytotoxic function, thereby failing to clear hyperactivated 
macrophages or infected cells, a process termed defective 
“fratricidal killing” (12-15). This dysfunction leads to 
sustained immune activation, perpetuating the cytokine 
storm. Recent research confirms that defective perforin 
secretion, often due to genetic mutations in primary 
HLH, disrupts the formation of lytic pores in target cells, 
exacerbating inflammation.

Hemophagocytosis
Hemophagocytosis, a hallmark of HLH, involves 
aberrantly activated macrophages engulfing red blood 
cells, white blood cells, and platelets, observable in bone 
marrow, spleen, or lymphoid tissues (2,16). This process 
reflects excessive macrophage activation but is neither 
specific nor diagnostic for HLH, as it can occur in other 
inflammatory conditions, such as sepsis or malignancy 
(2,16). Microscopic findings (e.g., macrophages 
phagocytosing erythrocytes or erythroblasts in bone 
marrow) underscore this feature, but its absence in 
early biopsies does not rule out HLH. Elevated levels 
of sCD25 and hyperferritinemia often correlate with 
hemophagocytosis, reflecting the underlying immune 
dysregulation.
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Triggers of Hemophagocytic Lymphohistiocytosis
HLH is classified into primary (familial) and secondary 
(acquired) types, each with distinct triggers that precipitate 
acute episodes.

Primary Hemophagocytic Lymphohistiocytosis
Genetic mutations, such as those in the perforin gene 
(PRF1) or genes like Unc-13 Homolog D, Syntaxin 
11, and Syntaxin Binding Protein 2, impair cytotoxic 
function, thereby predisposing individuals to primary 
HLH (4,14). These mutations disrupt granule-dependent 
cytotoxicity, leading to uncontrolled immune activation. 
Several syndromes, such as Chédiak-Higashi, Griscelli 
type II, and Hermansky-Pudlak type II, which involve 
defective granule secretion, also predispose to HLH, often 
presenting with partial albinism and platelet dysfunction.

Secondary Hemophagocytic Lymphohistiocytosis
This type of HLH is triggered by infections, malignancies, 
autoimmune diseases, or medications. Epstein-Barr 
virus (EBV) is the most common infectious trigger, 
initiating an exaggerated immune response (4,16). Other 
triggers include viral (e.g., cytomegalovirus and human 
immunodeficiency virus), bacterial (e.g., Rickettsia), 
fungal, and protozoal (e.g., leishmaniasis) infections. 
Malignancies, particularly non-Hodgkin lymphomas 
(T-cell and B-cell), are frequent triggers in adults, with 
91.6% of lymphoma-associated HLH cases presenting 
in advanced stages (III/IV). Autoimmune conditions, 
such as systemic lupus erythematosus or vasculitis, can 
induce macrophage activation syndrome (MAS), a form 
of secondary HLH. Recent reports also link immune 
checkpoint inhibitors and antibiotics (e.g., trimethoprim/
sulfamethoxazole) to HLH, likely via drug hypersensitivity 
reactions (17).

Common Mechanisms
Both primary and secondary types of HLH share a 
common pathway of immune dysregulation, where 
triggers amplify defective cytotoxic function, leading to 
persistent T-cell and macrophage activation. This results 
in elevated cytokine levels, such as interferon-gamma 
(IFN-γ) and IL-18, causing systemic inflammation, often 
requiring prompt intervention to prevent multi-organ 
failure.

This enhanced understanding of HLH immunopathology 
underscores the interplay of cellular dysfunction, 
hemophagocytosis, and diverse triggers, providing a 
foundation for exploring targeted diagnostics and therapies.

Biochemical Mediators in Hemophagocytic 
Lymphohistiocytosis
The cytokine storm in HLH is its most dreaded 
consequence. The cytokine storm has recently been 
increasingly recognised as a major player in tissue 
destruction. Recent experience with the coronavirus 
disease 2019 pandemic has reminded us that an 

exaggerated immune response can lead to lethality, 
regardless of the pathogen (18).

In HLH, the persistent activation of macrophages, NK 
cells, and CTLs leads to excess cytokine production. These 
cytokines can either promote or suppress the pathology of 
HLH. Cytokines (e.g., IFN-γ and TNF-α), ILs (e.g., 6, 10, 
and 12), and sCD25 are elevated (19). Biologically active, 
free IL-18 is also found to increase in secondary HLH (20). 

Some important biochemical mediators of the cytokine 
storm in HLH will be further discussed in the following 
sections. Figure 1 depicts the interplay of cytokines in 
HLH and the involved cell types.

Interferon-Gamma
IFN-γ plays a pivotal role in HLH pathology, as it is 
a proinflammatory cytokine involved in immune cell 
activation and antigen presentation enhancement (21,22). 
In addition, it is particularly vital in progressing certain 
hematologic conditions, including HLH and aplastic 
anemia. Produced primarily by NK cells during the 
innate immune response and by CD4 + T-helper 1 and 
CD8 + CTL cells in adaptive immunity, IFN-γ has been 
identified as critical in HLH onset (21). Several studies 
have underscored its essential contribution to HLH, with 
human and animal studies reporting elevated IFN-γ and/
or chemokine-C-X-C motif ligand 9 levels in HLH cases 
(5,23,24). Diagnostic potential lies in measuring IFN-γ in 
blood, such as through the QuantiFERON- tuberculosis 
assay (25). Moreover, IFN-γ is necessary for HLH-like 
symptoms in animal models (25). The findings indicate 
that IFN-γ overproduction exacerbates hematologic 
symptoms, while IL-2 overconsumption contributes to 
immune-related signs (26). Likewise, human studies 
report that IFN-γ levels are disproportionately high in 
HLH patients, demonstrating marked reductions post-
treatment with certain drugs (27,28). These insights 
support the potential use of IFN-γ inhibitors as novel 
therapeutic approaches for HLH.

Interleukin-1 Beta
The cytokine IL-1β is predominantly produced by activated 
macrophages. It stimulates white blood cells and endothelial 
cells and promotes other inflammatory cytokines, such as 
IL-6 (12). In addition, IL-1β is stored in its inactive proIL-
1β form within the cell cytosol, where its activation is closely 
associated with the nucleotide-binding and oligomerization 
domain (NOD)-like receptor family pyrin domain 
containing 3 (NLRP3) inflammasome and caspase-1 
enzyme (29). Caspase-1 activation relies on various 
inflammasomes within gene families, including NOD-NLRs 
and tripartite motif proteins (29,30). Through external 
adenosine triphosphate stimulation via the purinergic 
receptor P2X (P2X7) receptor, procaspase-1 engages the 
NLRP3 inflammasome, allowing for IL-1β activation and 
subsequent release from the cell (29,30). IL-1β is strongly 
associated with systemic onset Juvenile idiopathic arthritis 
(soJIA), an important condition linked to HLH (31).
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Interleukin-6
Produced by macrophages, IL-6 is a multifunctional 
cytokine released during early inflammation, alongside 
TNF-α and IL-1β (32). When IL-6 binds to its receptor 
IL-6R, it initiates a signalling cascade through gp130, 
activating the Janus kinase-signal transducer and activator 
of transcription 3 (JAK-STAT3) pathway and the Janus 
kinase-Src homology 2 domain containing protein tyrosine 
phosphatase 2-mitogen-activated protein kinase pathway 
(32). This process leads to STAT3 phosphorylation 
(33). Once in the nucleus, STAT3 regulates genes that 
drive inflammation, cell survival, proliferation, immune 
responses, and feedback inhibition (34). STAT3-driven 
IL-6 signalling also stimulates the suppressor of cytokine 
signalling 1 and cytokine signalling 3, which have anti-
inflammatory effects by curtailing JAK and IL-6 activity 
(33,35). Thus, IL-6 exhibits pro-inflammatory and anti-
inflammatory properties. Although the exact role of IL-6 
in MAS is unknown, extended exposure to IL-6 may 
amplify the body’s reaction to Toll-like receptor ligands, 
connecting high IL-6 in HLH to a worsened inflammatory 
response (12). Additionally, IL-6 may impair NK cell 
cytotoxicity by decreasing perforin and granzyme B 
expression, as observed in IL-6 transgenic mice (35).

Interleukin-18
A member of the IL-1 family, IL-18 is mainly produced 
by activated macrophages and stimulates NK cells and 
T cells to produce IFN-γ. Clinically, IL-18 serves as a 
marker for various HLH types and may indicate MAS risk 
in hyperferritinemia or autoinflammatory disorders (36). 

IL-18, which is somehow similar to IL-1β, remains inactive 
within cells until activated by caspase-1 (36). While IL-18 
uses a different receptor than IL-1β, its signalling parallels 
IL-1β by activating the MyD88-IRAK1/4-NF-κB (IRAK-
IL-1 receptor-associated kinase, nuclear factor-kappa B) 
pathway and mitogen-activated protein (p38-MAP) kinase 
upon binding to the receptors IL-18Rα and recruiting IL-
18Rβ (20,36). However, distinct requirements exist; IL-18 
needs additional stimulants (e.g., IL-12) to induce IFN-γ 
production, while IL-1β can activate diverse cells at much 
lower levels without added stimuli (37).

Tumor Necrosis Factor Alpha
Mostly produced by monocytes and macrophages, TNF-α 
is a polymorphic pro-inflammatory cytokine that is 
important in causing macrophages to polarize toward 
the M1 pro-inflammatory phenotype (15). According to 
a study examining the effect of recombinant TNF on NK 
cell activity in peripheral blood, specific lysis rates of NK 
cells decreased following treatment (38). While TNF-α is 
generally considered to promote the progression of HLH, 
there are instances where TNF-α inhibitors have been 
reported to indirectly induce HLH, thereby presenting a 
contradiction to its characterization as a positive regulator 
of the syndrome.

A study conducted by Baker et al documented 10 cases 
of MAS associated with the use of TNF-α inhibitors, 
such as etanercept, infliximab, and adalimumab (39). 
They found that the onset of MAS was temporally linked 
to the administration of these inhibitors, with patients 
developing MAS related to adalimumab approximately 
2.5 months after treatment initiation. TNF-α inhibitor-

Figure 1. The Interplay of Cytokines in Hemophagocytic Lymphohistiocytosis. Source. Created in BioRender. Punjadath, Sryla (2024). https://BioRender.com/
t22h322

https://BioRender.com/t22h322
https://BioRender.com/t22h322


Avicenna J Med Biochem. 2025;13(1)64

Punjadath and Kant

related MAS may be caused by immune system dysfunction 
and infections. Four individuals in the documented cases 
experienced liver abscesses, disseminated histoplasmosis, 
visceral leishmaniasis, and primary EBV infections after 
receiving adalimumab treatment (39).

Moreover, TNF-α can occasionally produce a 
paradoxical immune response, where immune 
suppression is followed by compensatory activation of 
the immune system (40). This imbalance can contribute 
to the development of MAS. Although there may be a 
relationship between TNF-α inhibitors and HLH, the 
evidence does not definitively establish the negative 
regulatory role of TNF-α. Accordingly, the underlying 
mechanisms warrant further investigation.

Interleukin-10
IL-10 is synthesized by various immune cells and has 
several functions as an immune regulator. It is categorized 
as one of the three principal subgroups in the IL-10 
cytokine family. Further, IL-10 primarily communicates 
through the JAK-STAT signalling pathway, affecting 
a wide range of immune cell types and exerting strong 
anti-inflammatory effects (41). It modulates hemoglobin 
via the CD163 receptor on cell surfaces, leading to the 
production of IL-10 and heme oxygenase (HO-1) (42). 

Additionally, IL-10 enhances the expression of CD163 
on macrophages. In addition, HO-1 plays a vital role in 
breaking down heme, producing carbon monoxide and 
ferrous ions (Fe²⁺), which contribute to anti-inflammatory 
responses (15). By suppressing the overall immune 
activity, IL-10 significantly influences HLH in a negative 
regulatory capacity.

Moreover, IL-10 impairs effective antigen presentation 
by reducing the expression of MHC-II and affecting 
the function of antigen-presenting cells. It inhibits the 
production of crucial cytokines (e.g., IL-12 and IL-23) for 
CD4⁺ T cell differentiation and directly suppresses T cell 
proliferation and cytokine secretion, potentially leading 
to T cell anergy (43). Similarly, IL-10 can diminish the 
secondary immune responses of CD8 + ve T-cells (44). It 
is also known to inhibit the production of inflammatory 
mediators by neutrophils (45).

Considering that HLH is fundamentally characterized 
by an overwhelming inflammatory response, IL-10 may 
play a role in slowing its onset to some extent. Research 
has shown that mice with MAS induced by sustained 
CpG-oligodeoxynucleotide injection demonstrate a 
blockade of IL-10, which can worsen MAS (46). 

Transforming Growth Factor Beta
The TGF-β ligand superfamily has 32 members. It is 
divided into TGF-β and bone morphogenetic proteins 
(47). The TGF-β subgroup is significant for immune 
system regulation. It acts via the TGF-β receptor II , 
which then recruits the TGF-β receptor I with the help of 
TGF-β receptor III, triggering the phosphorylation of the 
suppressors of mothers against decapentaplegic (Smad) 

protein family (48). The phosphorylated Smad2, Smad3, 
and Smad4 proteins form complexes that influence 
interactions within the nucleus and regulate transcription 
factors, leading to various cellular outcomes (49).

TGF-β also plays a vital role in maintaining immune 
system balance, particularly in regulating T-cell responses. 
It reduces autocrine IL-2 production, thereby inhibiting 
CD4 + T-cell proliferation (50). TGF-β activation 
of the Smad protein family restricts CTL cells from 
producing IFN-γ, perforin, granzyme, and Fas ligand 
(51). Furthermore, the Smad2 protein collaborates with 
other signalling pathways (e.g., STAT5 and nuclear factor 
of activated T-cells) to induce forkhead box protein P3 
expression, promoting the differentiation of T-regulatory 
cells (Tregs) (52). Additionally, TGF-β downregulates 
the T-bet transcription factor and suppresses the 
differentiation of T-helper 1 cells (18, 53). It also inhibits 
NK-cell function through several mechanisms (54).

In general, TGF-β negatively regulates various immune 
cells while promoting the growth and differentiation of 
Tregs. By controlling the activities of T-cells and NK cells, 
TGF-β may help slow the progression of HLH.

Interleukin-2
T cells are the main source of IL-2, which is essential 
for activating Tregs and CTLs. In certain conditions 
(e.g., perforin deficiency), IL-2 levels can fluctuate, 
either increasing or decreasing. Hyperactivated CTLs 
often express elevated levels of the IL-2 receptor (also 
known as CD25), leading to greater IL-2 consumption. 
This increased usage by CTLs can deprive Tregs of IL-
2, impacting their function and potentially disrupting 
immune balance (26). Similar to NK cells, the Treg 
population (CD4 + CD25 + T cells) plays an important 
role in the suppression of excessively activated immune 
cells. Impaired Treg function may promote the process of 
HLH.

Interleukin-33
In mice models of perforin-deficient HLH, IL-33 
significantly amplifies immunological dysregulation (55). 
Notably, signalling through the IL-33/suppression of 
tumorigenicity 2 pathway has been shown to facilitate the 
activation of CTLs and the production of IFN-γ (55).

Clinical Implications of Cytokine Pathways in 
Hemophagocytic Lymphohistiocytosis
Diagnosis of Hemophagocytic Lymphohistiocytosis
Identifying and standardizing biochemical abnormalities 
in HLH offer exciting diagnostic and therapeutic 
opportunities. Well-known biochemical abnormalities 
(e.g., hyperferritinemia, hypertriglyceridemia, and 
hypofibrinogenemia) are not sensitive or specific to HLH. 
NK cell cytotoxicity and sCD25 levels, which are included 
in the HLH-2004 criteria, are unavailable in most centres, 
thereby reducing their practical application. The diagnosis 
of HLH still heavily relies on the clinician’s judgement. It 
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is often delayed, and confusion arises between infection 
and HLH. 

In a single-centre retrospective study from Canada, 
C-reactive protein (CRP) and ferritin levels were 
measured before commencing treatment for HLH, Adult-
onset Still’s disease (AOSD), or coronavirus disease-2019 
cytokine storm (56). Ferritin levels did not vary 
significantly. A significantly lower level of CRP was noted 
in HLH patients compared to AOSD and coronavirus 
disease-2019 cytokine storm. A CRP below 94.5 mg/dL 
distinguished HLH with a sensitivity rate of 66.1% and 
specificity rate of 87.5% (56). It is noteworthy that even 
though median CRP values were lower, the range of CRP 
varied widely in this study. 

A study conducted across multiple centres in Belgium 
from July 2014 to February 2016 measured the serum 
samples for ferritin, glycosylated ferritin, sCD25, sCD163 
and sCD14, IL-6, IFN-γ, IL-18, IL-10, IL-1ß, IL-12p70, 
IL-17α, IFN-γ-induced protein 10, and chemokine-C-
X-C motif ligand 9 in adult patients suspected to have 
HLH within the first 24 hours of admission (57). Out of 
120 patients, 14 fulfilled the HLH-2004 criteria for HLH. 
Ferritin, IL-18, and glycosylated ferritin had the highest 
discrimination ability. The researchers combined IL-18 
with the previously validated HScore, yielding a new IL-
18Hscore. The new score performed better, with a higher 
specificity (86%) than HScore alone (70%) (10, 57).

Nonetheless, further biomedical research is warranted 
to identify a marker that can diagnose HLH at the bedside 
while being feasible to be performed at most centres.

Treatment of Hemophagocytic Lymphohistiocytosis
The survival time in genetic HLH without treatment is 
only around 1-2 months (58). Most adult patients with 
HLH are treated using pediatric protocols, such as the 
HLH-94 and HLH-2004. The HLH-94 protocol used 
dexamethasone, etoposide, and cyclosporine-A from 
week 9 with or without intrathecal methotrexate. Survival 
with the HLH-94 protocol improved to 55% at the 3.1-
year follow-up (58). The HLH-2004 protocol utilized 
cyclosporine-A upfront, along with dexamethasone and 
etoposide (3). Hematopoietic stem cell transplantation 
(HSCT) is indicated in familial, severe, or refractory cases. 
The treatment of the underlying disorder is required in 
infection and malignancy-associated HLH and in MAS. 
The 5-year probability of survival after a median 5 
years of follow-up was 61% (56–67%) (59). Overall, the 
5-year probability of survival post-HSCT was 66% (59). 
Despite the less-than-desirable survival, conventional 
chemotherapeutics have significant toxicities. The 
discovery of key inflammatory cytokines has led to the 
investigation of targeted therapeutics for HLH. Possible 
therapeutic cytokine targets in HLH treatment are 
illustrated in Figure 2.

Targeting Interferon-Gamma
Emapalumab is a human immunoglobulin G1 monoclonal 
antibody against anti-IFN-γ. The Food and Drug 
Administration approved emapalumab in 2018 for 
pediatric and adult patients with primary HLH. It is the first 
targeted treatment approved for HLH. Studies evaluating 
the efficacy of emapalumab are listed in Table 1.

Figure 2. Therapeutic Targets in Hemophagocytic lymphohistiocytosis. Source. Created in BioRender. Punjadath, Sryla  (2024). https://BioRender.com/
p67r829

https://BioRender.com/p67r829
https://BioRender.com/p67r829
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The safety and efficacy of emapalumab were published 
in a phase 2/3 trial (60). Thirty-four pediatric patients 
with presumed primary HLH were given emapalumab, 
along with dexamethasone, in an open-label single-group 
study. The study sample included 27 previously treated 
and 7 previously untreated patients. They were followed 
up until one year after the HSCT, or one year after the 
last dose of emapalumab, if HSCT was not performed. 
Nearly 65% of emapalumab-treated patients could 
proceed to transplantation. At the end of the study, 74% 
of previously treated patients and 71% of patients treated 
with emapalumab were alive, and there were no increased 
toxicities with emapalumab (60). 

Emapalumab was also assessed in MAS secondary to 
AOSD/soJIA in a phase-2, open-label, single-group study, 
and the results revealed that this medication was effective 
in achieving remission by 8 weeks (61). 

A recent retrospective study has focused on patients 
undergoing reduced-intensity conditioning before HSCT 
for primary HLH given emapalumab pre-HSCT (62). Out 
of 55 patients, 22 received emapalumab within 21 days of 
the conditioning regimen. Intervention-free survival was 
significantly higher in patients receiving emapalumab 
(73% vs. 43%, P = 0.03). Overall survival did not differ 
significantly (62).

Ongoing trials (NCT03312751, NCT03985423) of 
emapalumab in primary and secondary HLH are yet to be 
reported (63, 64). 
Targeting Janus Kinases
Downstream of the IFN-γ receptor activation, the JAK 
play an important role in signal transduction. Blocking 
the JAK pathway is an alternative to blocking the IFN-γ. 

It has the additional advantage of oral administration. 
Ruxolitinib is a selective JAK1 and JAK2 inhibitor. It 

blocks the downstream signalling of IFN-γ in addition 
to several cytokines, such as IL-2, IL-6, IL-10, IL-12, and 
granulocyte monocyte-colony-stimulating factor. Studies 
evaluating the efficacy of ruxolitinib are provided in 
Table 2. Despite these studies, Severeal case studies have 
reported a favourable reponse to ruxolitinb when used as 
a salvage therapy, as described in this recent review article 
(65). 

Two studies from the same centre reported a small 
case series of patients with secondary HLH treated with 
ruxolitinib, showing good responses to treatment (66,67). 

In a study from China, 34 adult and pediatric patients 
with relapsed/refractory secondary HLH received 
ruxolitinib salvage therapy (69). Complete response 
and partial response were achieved by 5 patients and 20 
patients, respectively. The rate of mortality was 44.4% 
(n = 15) after a median follow-up of 26.5 (15–52) weeks 
(69). The same group of investigators performed a trial 
of combined conventional doxorubicin-etoposide-
methylprednisolone treatment with ruxolitinib as 
salvage therapy for relapsed/refractory HLH during a 
similar period (70). Of 54 patients, 8 achieved complete 
remission, while 31 achieved partial remission. Notably, 
patients with EBV-HLH had lower efficacy with combined 
therapy (70).

Researchers in Beijing, China, developed a novel 
treatment approach based on ruxolitinib (68). Ruxolitinib 
was used as a frontline therapy in pediatric patients with 
HLH. Monotherapy was continued for patients having 
a favorable response, while treatment was intensified in 

Table 1. Clinical Trials of Emapalumab in HLH

Title and Reference Number Year Study Design Population Outcome

Emapalumab in children with primary 
hemophagocytic lymphohistiocytosis (60)

2020 Open-label; single arm
Children ( < 18 years) with primary 
HLH 
N = 34

Overall, 71% of patients treated 
with emapalumab stayed alive at 
one year; the results demonstrated 
no excess toxicity.

Efficacy and safety of emapalumab in 
macrophage activation syndrome (61)

2023 Open label; single arm
Patients with MAS secondary to 
soJIA or AOSD; median age = 11 
years (range 2-25 years) N = 14

The efficacy outcome of remission, 
assessed at week 8, was achieved by 
13 out of 14 patients.

Note. N denotes the sample size in the study. HLH: Hemophagocytic lymphohistiocytosis; AOSD: Adult-onset Still’s disease; soJIA: Systemic onset juvenile 
idiopathic arthritis; MAS: Macrophage activation syndrome.

Table 2. Studies Evaluating the Efficacy of Ruxolitinib

Title and Reference Number Year Study Design Population Outcome

Ruxolitinib in adult patients with secondary 
haemophagocytic lymphohistiocytosis: an 
open-label, single-centre, pilot trial (66)

2019
Open-label, 
single centre, 
pilot study

Adults (age > 18 years) secondary HLH
N = 5 (still enrolling)

No deaths at the median follow-up of 
490 days; one serious adverse event of 
grade-4 febrile neutropenia

Ruxolitinib in adult patients with secondary 
hemophagocytic lymphohistiocytosis (67)

2021
Open-label, 
single-centre

Adult ( > 18 years) patients with 
secondary HLH
N = 13

Three patients died, and five each 
achieved complete and partial 
remission.

A study of ruxolitinib response–based 
stratified treatment for pediatric 
hemophagocytic lymphohistiocytosis (68)

2022
Single-arm, 
open-label, 
single-centre

Paediatric patients (age < 18 years) with 
newly diagnosed HLH
N = 52

Response to ruxolitinib monotherapy 
on day 28 was 69.2%. Overall survival 
at 12 months for a ruxolitinib-based 
stratified approach was 86.4%.

Note. N represents the sample size in the study. HLH: Hemophagocytic lymphohistiocytosis.



Avicenna J Med Biochem. 2025;13(1) 67

Biochemical basis of HLH

others. Patients with EBV-HLH were found to be more 
sensitive to ruxolitinib. Out of 52 patients, 69.2% (n = 36) 
achieved complete remission on ruxolitinib monotherapy 
on day 28. The 12-month overall survival for this approach 
was 86.4% (95% confidence interval: 77.1–95.7%).

Other researchers tried a combination of targeted 
therapies. A retrospective analysis from a single centre 
reported 13 patients who received emapalumab and 
ruxolitinib for HLH treatment (71). All patients were 
adults (age > 18 years) with HLH of varied etiology. Eight 
patients had refractory/relapsed disease and had received 
previous treatment. At a median follow-up of 5.8 months, 
5, 4, and 4 patients proceeded to allogeneic HSCT, died, 
and survived, respectively. Two patients who proceeded 
to HSCT died due to HSCT-related complications. The 
overall estimated survival at 5 months was 44.4% (71).

Targeting Cluster of Differentiation 52 (Alemtuzumab)
Alemtuzumab is a humanized anti-CD52 monoclonal 
antibody that depletes B cells and T cells from the 
peripheral blood circulation without depleting the 
hematopoietic progenitor cells. It is used in the 
management of chronic lymphocytic leukemia, T-cell 
large granular leukemia, multiple sclerosis, refractory 
aplastic anemia, conditioning regimen in HSCT, and graft 
treatment against host disease. 

A single-centre retrospective study of patients who 
received alemtuzumab for refractory HLH was performed 
in 2013 (72). Twenty-two adult and pediatric patients 
who had previously received conventional HLH therapies 
were given alemtuzumab 1 mg/kg divided over 4 days. 
In addition, 11 patients required additional doses of 
alemtuzumab following the initial dose, of whom 3 died, 
2 required additional salvage therapy, and 7 proceeded to 
HSCT. Overall, 14 patients had an overall partial response, 
and 17 patients proceeded to HSCT. The probability of 
survival following alemtuzumab salvage therapy at a 
median of 870 days was 64% ( + /- 21%) (72).

A multicentre, open-label, Phase I/II non-randomised 
trial of alemtuzumab in primary HLH was conducted in 
Paris. The researchers reported that 26 patients received 
alemtuzumab retrospectively. In the retrospective 
study, 24 out of 26 patients proceeded to HSCT. In the 
prospective study, twenty-nine treatment naïve patients 
with genetically confirmed primary HLH were given first-
line alemtuzumab alongside steroids and cyclosporin A. 
Twenty-two patients survived until HSCT (73).

Alemtuzumab has demonstrated variable responses in 
patients with HLH as both primary and salvage therapies. 
It may be used off-label in HLH. More evidence is required 
regarding its safety. It is noteworthy that this antibody 
medication can notoriously induce several autoimmune 
diseases, including HLH (74, 75). 
Targeting Interleukin-6
IL-6 is a cytokine elevated in patients with HLH. As 
discussed earlier, the role of IL-6 in HLH is unclear. This 
cytokine has positive and negative regulatory roles in 

HLH.
Tocilizumab is an IL-6 receptor inhibitor. It may be 

effective as a treatment for cytokine release syndrome 
(76). It is the cornerstone in the management of 
chimeric antigen receptor-T-cell-induced CRS (77). 
Moreover, it dampens the action of effector cytokines 
without compromising the function of chimeric antigen 
receptor-T cells.

For this reason, or due to as yet unclear mechanisms, 
tocilizumab has not been an effective therapy in HLH. 
Treatment with this medication in patients with soJIA did 
not reduce the occurrence of MAS (78). The results of a 
retrospective study of secondary HLH patients receiving 
tocilizumab in Korea revealed a trend toward higher 
mortality as compared to patients receiving standard care 
(79). It is noteworthy that IL-6 has an as yet ambiguous 
role in HLH and has several pro-inflammatory and anti-
inflammatory properties.

Targeting Interleukin-1
Anakinra is a recombinant human IL-1 receptor antagonist. 
Nine of the 13 individuals with HLH attributable to acute 
leukemia in a retrospective assessment did not experience 
the recurrence of HLH after receiving anakinra initially 
(80). The use of anakinra in six children with secondary 
HLH also showed promising results (81). A retrospective 
analysis of 44 children with secondary HLH or MAS treated 
in a single centre in Alabama demonstrated that the earlier 
initiation of anakinra (within 5 days) was associated with 
reduced mortality (82). Another retrospective analysis of 
adult patients with secondary HLH reported 30 patients 
who received the HLH-94 protocol, anakinra and high-
dose steroids, high-dose steroids alone, and supportive 
care only (83). Compared to other groups, those receiving 
anakinra with high-dose steroids had numerically higher 
survival at 1 year (83).

Targeting Interleukin-18
Tadekinig-α is a recombinant IL-18 binding and 
neutralizing protein. It has shown promising results in 
the treatment of AOSD (84, 85). A phase-3 clinical trial 
(NCT03113760), assessing the efficacy of tadikinig-α in 
primary HLH with nucleotide-binding oligomerization 
domain, leucine-rich repeat and caspase-recruiting 
domain containing-4 mutations, and X-linked inhibitor 
of apoptosis deficiency, completed recruitment, and the 
results are awaited (86).

Conclusion
In general, HLH remains a highly fatal immune disorder 
characterized by aggressive immune activation and 
cytokine storm. Despite advancements in understanding 
the pathophysiology of HLH, including the involvement of 
key cytokines (e.g., IFN-γ, TNF-α, and IL-18), challenges 
in diagnosis and treatment persist. Current diagnostic 
criteria (e.g., the HLH-2004 protocol) are insufficiently 
specific and often delay diagnosis, especially in adult 
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populations where HLH may be under-recognized.
Biochemical mediators have opened new avenues 

for targeted therapies, with emapalumab representing 
a breakthrough as an IFN-γ inhibitor approved for the 
refractory cases of HLH. Nevertheless, survival rates, 
particularly in severe and genetic HLH cases, highlight 
the urgent need for better therapeutic strategies and 
early diagnostic markers. Ongoing research into cytokine 
profiles (e.g., the IL-18 HScore) and the use of newer 
treatments (e.g., monoclonal antibodies) offer hope 
for improving outcomes. Nonetheless, more extensive 
studies are required to validate these tools in diverse 
clinical settings and broaden their accessibility, especially 
in resource-limited environments. Understanding the full 
biochemical basis and integrating precision medicine in 
HLH management can also revolutionize patient care and 
long-term survival outcomes.
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