
Background
Alzheimer’s disease (AD) accounts for about 70% of 
dementia cases and is characterized by severe cognitive 
decline, affecting memory, learning, occupational 
function, thinking ability, and language. It profoundly 
affects daily life, causing economic and social burdens on 
patients (1). AD, as a slowly progressive neurodegenerative 
disorder, is a disease that leads to the deterioration of 
brain cells. In addition, it stands as the primary underlying 
factor of dementia (2). Currently, there are approximately 
50 million AD patients worldwide, and it is projected that 
this number will triple by 2050. AD places a significant 
burden on those who are affected by it, as well as on 

their families and the economy (3). This disease can be 
classified into two categories based on age of onset and 
pathological factors. Early-onset or familial AD (EOAD) 
presents before the age of 65 and may co-occur with 
conditions such as hypertension, metabolic syndrome, 
and diabetes mellitus. Late-onset AD (LOAD), on the 
other hand, manifests after 65 years and is associated 
with amyloid plaque formation (4). The progression 
of the disease is influenced by immutable factors such 
as age and genetic risk, as well as modifiable factors, 
including cardiovascular risk and lifestyle choices (5). 
The accumulation of tau protein and amyloid-β plays a 
pivotal role in AD development, occurring years before 
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Abstract
Background: Gaining insight into the underlying molecular mechanisms of Alzheimer’s disease 
(AD) is crucial. 
Objectives: This study aimed to employ a systems biology approach to identify new non-invasive 
diagnostic biomarkers for AD.
Methods: Gene expression data series GSE122063 and microRNA (miRNA) expression data 
series GSE90828 were obtained from the Gene Expression Omnibus database. The Limma 
package under R software was used to assess differentially expressed miRNAs and differentially 
expressed genes (DEGs). Afterward the protein-protein interaction (PPI) network was constructed 
by the STRING software and evaluated with Cytoscape software. The multilayer perceptron 
neural network (MLP-NN), a widely used artificial neural network (ANN), was employed to 
classify two groups.
Results: A total of 1388 DEGs were identified in AD patients compared to the control group, 
and 11 differentially expressed miRNAs were found in patients with mild cognitive impairment 
(MCI) in comparison to the control group. The results revealed that EGFR, identified as a hub 
gene, was targeted by miR-15b-3p and let-7a-5p, while TLR4, another hub gene, was targeted by 
miR-15b-3p. The MLP-NN constructed using both hsa-let-7a-5p and hsa-miR-15b-3p achieved 
a sensitivity of 0.857 and an area under the curve of 0.917 in detecting Alzheimer’s patients.
Conclusion: Our findings suggest that miR-15b-3p, by targeting EGFR and TLR4, and let-7a-
5p, by targeting EGFR, may play a significant role in AD. Additionally, the constructed ANN 
utilizing the expression levels of plasma miR-15b-3p and let-7a-5p could serve as a potential 
non-invasive diagnostic tool with high sensitivity for AD detection.
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cognitive impairment emerges (6). The disease begins 
with abnormal processing of the amyloid-β precursor 
protein, resulting in the generation of β amyloids (7). 
Impaired degradation and decreased clearance at the 
blood-brain barrier result in an increased amount of toxic 
Aβ42. Subsequently, insoluble plaques precipitate in the 
brain, particularly in areas such as the medial temporal 
lobe, parietal lobe, and frontal lobe (8). Amyloid plaques 
lead to the blockade of neuronal membrane receptors such 
as AMPAR, NMDAR, mAChRs, and nAChR, resulting 
in the ultimate impairment of synaptic transmission. 
These plaques trigger the generation of reactive oxygen 
species (ROS), which in turn promotes mitochondrial 
oxidative stress and the activation of apoptotic-related 
pathways. Moreover, the production of ROS by amyloid 
plaques results in the hyperphosphorylation of tau and the 
disruption of microtubules due to the activation of ERK2, 
PKA, and PKC (9). Elevated Aβ amyloid concentration 
creates an excitotoxic environment, leading to neuronal 
injury, disruption of neuronal homeostasis, oxidative 
injury, and hyperphosphorylation of the microtubule-
associated protein tau. These events contribute to cerebral 
atrophy (10). AD’s pathophysiology is multi-dimensional, 
reflecting intricate genetic heterogeneity (11). Preliminary 
biomarker studies in preclinical AD have shown familial or 
autosomal dominant manifestations confirmed by genetic 
tests, cerebrospinal fluid, blood, or brain abnormalities 
(12). Advances in genetic and genomic technologies have 
enhanced our understanding of AD’s genetic structure, 
with genes such as APP, PSEN1, PSEN2, and APOE 
having significant effects on disease susceptibility (13). 
Additionally, various studies have identified several 
genes as potential diagnostic biomarkers for AD (11,13-
15). MicroRNAs (miRNAs) have also been suggested as 
potential candidates for early AD diagnosis (16). They are 
a group of non-coding RNAs, containing approximately 
22 nucleotides, that regulate target genes (17-19). The 
evaluation of expression levels of circulating miRNAs in 
patients may aid in early AD diagnosis. Current studies 
suggest that miRNAs play an crucial role in the initiation 
and development of AD by influencing various processes, 
including Aβ metabolism, synaptic plasticity, immune-
inflammatory responses, neuronal growth, differentiation, 
and apoptosis (20).

Recently, the application of machine learning methods in 
medicine has garnered significant attention (21). Among 
these techniques, artificial neural networks (ANNs) have 
stood out for their capacity to model nonlinear correlations 
between variables. ANNs have been employed in various 
medical applications, including diagnosis, screening, and 
image processing (22). 

The aim of molecular biology studies in AD is to acquire 
a deeper understanding of the fundamental mechanisms 
of disease risk and develop targeted treatments to intercept 
or delay its onset. In this research, we adopted a systems 
biology approach to explore the molecular pathways 
involved in AD and discover new non-invasive diagnostic 

biomarkers for the disease. Additionally, we utilized 
ANNs for the classification of Alzheimer’s patients and 
healthy controls.

Materials and Methods
Gene and miRNA Expression Data 
In this system biology study, gene expression data were 
retrieved from the Gene Expression Omnibus (GEO) 
database (under accession number GSE122063) using the 
platform GPL16699. This data series consists of 136 frontal 
and temporal cortex samples, comprising 36 vascular 
dementia (VaD) cases, 56 AD cases, and 44 non-demented 
controls. For miRNA expression data, information was 
retrieved from GEO database (under accession number 
GSE90828) utilizing platform GPL22741. This data 
series includes 53 plasma samples, comprising 30 control 
samples and 23 mild cognitive impairment (MCI) samples.

The Limma package in R software was employed to assess 
the differentially expressed genes (DEGs) between 56 AD 
samples and 44 non-demented control samples. Similarly, 
the Limma package was used to evaluate the differentially 
expressed miRNAs between 23 MCI samples and 30 
control samples, with the criterion of Abs(logFC) ≥ 1 and 
P ≤ 0.05. MicroRNAs target prediction. 

The miRWalk software (http://zmf.umm.uniheidelberg.
de/apps/zmf/mirwalk2/) was applied to determine the 
valid target genes of differentially expressed miRNAs. 

Functional/Enrichment Analysis
The DAVID software (https://david.ncifcrf.gov/) was 
employed for conducting gene ontology (GO) and Kyoto 
Encyclopedia of Gene and Genome (KEGG) pathway 
enrichment analysis. The GO analysis covered biological 
processes (BP), molecular functions, and cellular 
components.

Network Construction
The protein-protein interaction (PPI) network of the 
selected DEGs was created through String software 
(https://string-db.org/), with a minimum required 
interaction score of 0.7. Subsequently, the constructed 
network was assessed using Cytoscape software (version 
3.6). To identify hub genes, the degree of the network was 
analyzed using the cytoHubba plugin within Cytoscape 
software. A bipartite miRNA-mRNA graph was also 
created by merging the PPI network with the miRNA-
target gene network.

Artificial Neural Network
In this research, a multilayer perceptron neural network 
(MLP-NN), widely used in ANNs, was utilized for the 
classification of two groups. The MLP-NN comprises the 
input, output, and hidden layers. Activation functions 
within the MLP-NN facilitate data transformation from 
one layer to the next. For our investigation, the input layer 
incorporated the expression levels of selected miRNAs, 
and a single hidden layer was utilized as well. The 

http://zmf.umm.uniheidelberg.de/apps/zmf/mirwalk2/
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output layer represented the binary response variable for 
Alzheimer’s presence, indicating the probable outcomes 
for Alzheimer’s and healthy controls. To achieve a 
composite nonlinear mapping between the input and 
output layers, several nodes were empirically identified in 
the hidden layer to optimize network performance. The 
hyperbolic tangent as the activation function was used 
for the hidden layer, while the “softmax” function was 
employed in the output layer. 

Results
Identification of Differentially Expressed Genes and 
Differentially Expressed MicroRNAs
The results obtained from the Limma package revealed 
a total of 1388 DEGs that were selected in AD patients 
compared to the control group. Additionally, 11 
differentially expressed miRNAs were identified in MCI 
patients when compared to the control group. These 
miRNAs included hsa-miR-339-3p, hsa-miR-374a-5p, 
miR-15b-3p, hsa-miR-151-3p, miR-93-3p, hsa-miR-652-
5p, hsa-miR-27b-5p, hsa-let-7a-5p, hsa-miR-374b-5p, 
hsa-miR-1974, and hsa-miR-146a-5p.

Protein-Protein Interaction Network and MicroRNA-
mRNA Network Analysis 
The depicted PPI network for 1388 DEGs was visualized 
and analyzed using Cytoscape. According to the outcomes 
of the network analysis conducted with cytoHubba, the 
top 10 hub genes with the highest degree were selected, 
including SNAP25, SYP, EGFR, BDNF, PTPRC, SYT1, 
SLC32A1, GAD2, GFAP, and TLR4.

Furthermore, upon merging and analyzing the 
constructed network for DEGs and the miRNA-target 
gene network, it was found that among the 11 differentially 

expressed miRNAs, only 6 miRNAs (miR-652-5p, let7a-5p, 
miR-15b-3p, miR-27b-5p, miR-374b-5p, and miR-93-3p) 
had valid targets that were also chosen as DEGs (Figure 1). 
Specifically, EGFR and SETD7 were the common targets 
of miR-15b-3p and let7a-5p, while SV2B was the common 
target of miR-93-3p and miR-27b-5p. In addition, EGFR, 
as one of the top 10 hub genes, was targeted by both let7a-
5p and miR-15b-3p (Figure 2). Similarly, SYP and TLR4, 
also among the top 10 hub genes, were targets of miR-
374b-5p and miR-15b-3p, respectively (Figure 2). 

Gene Ontology and the Kyoto Encyclopedia of Genes and 
Genome Pathway Analysis
The results of the GO enrichment analysis revealed 
significant enrichments in several BP terms, including 
chemical synaptic transmission, neurotransmitter 
secretion, glutamate secretion, inflammatory response, 
and neuropeptide signaling pathway. For cellular 
component terms, enrichments were observed in cell 
junction, synaptic vesicle membrane, axon, plasma 
membrane, synapse, integral component of the plasma 
membrane, neuronal cell body, neuron projection, 
synaptic vesicle, and postsynaptic membrane. In terms of 
molecular functions, enrichments were found in calcium 
ion binding, calmodulin binding, and neuropeptide 
hormone activity.

Additionally, the KEGG pathway analysis demonstrated 
enrichments in several pathways, including retrograde 
endocannabinoid signaling, gamma-aminobutyric acid 
(GABA)ergic synapse, nicotine addiction, neuroactive 
ligand-receptor interaction, staphylococcus aureus 
infection, cholinergic synapse, glutamatergic synapse, 
calcium signaling pathway, synaptic vesicle cycle, and 
morphine addiction (Figure 3).

Figure 1. Constructed Network for DEGs and miRNA-target Genes. Note. DEG: Differentially expressed gene; miRNA: MicroRNA. Among 11 differentially 
expressed miRNAs, only 6 miRNAs had valid targets selected as DEGs. EGFR and SETD7 were the common targets of mir-15-3p and let-7a-5p. In addition, SV2B 
was the common target of miR-93-3p and miR-27b-5p
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Figure 2. The Constructed PPI Network Merged With the MiRNA-mRNA Interaction Network. Note. PPI: Protein-protein interaction; miRNA: MicroRNA. The 
top 10 hub genes with the highest degree, including SNAP25, SYP, EGFR, BDNF, PTPRC, SYT1, SLC32A1, GAD2, GFAP, and TLR4, are shown in green color. 
EGFR, as a top 10 hub gene, was a target of let-7a-5p and miR-15b-3p. Further, SYP and TLR4 as top 10 hub genes were the targets of miR-374b-5p and miR-
15b-3p, respectively

Figure 3. The Results of the KEGG Pathway and GO Enrichment Analysis. Note. KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene ontology. Five 
selected biological process terms with a P-value less than 0.05, the top ten cellular component terms, tree molecular functions with a P-value less than 0.05, 
and the top ten KEGG pathways have been shown



Avicenna J Med Biochem, 2023, Volume 11, Issue 2142

Darvishi Talemi et al 

Classification of Two Groups With Artificial Neural 
Networks
Based on the data in Table 1, the area under the receiver 
operating characteristic (ROC) curve (AUC), specificity, 
and sensitivity were calculated for hsa-miR-374b-5p, hsa-
miR-15b-3p, and hsa-let-7a-5p, as well as the combination 
of hsa-let-7a-5p and hsa-miR-15b-3p, using the MLP-
NN method. All three AUC values were found to be 
significantly greater than 0.5, which is the reference value 
indicating random prediction.

Among the scenarios, the MLP-NN constructed using 
both hsa-let-7a-5p and hsa-miR-15b-3p exhibited a 

sensitivity of 0.857 and an AUC of 0.917 in detecting 
Alzheimer’s patients, which were superior to the other 
scenarios (Figure 4).

Discussion
Diagnosing AD in its early stages can be pivotal in 
preventing disease progression, expediting the treatment 
process, and potentially improving patients’ cognition 
and overall quality of life. The conventional methods of 
diagnosing AD have limitations, such as late detection, 
invasiveness, high costs, complex procedures, time-
consuming processes, low sensitivity, and the possibility of 
false-positive results. Therefore, the identification of novel 
non-invasive diagnostic biomarkers with high accuracy is 
of paramount importance.

The results of the current study revealed that six 
miRNAs, namely, miR-652-5p, let7a-5p, miR-15b-3p, 
miR-27b-5p, miR-374b-5p, and miR-93-3p, had valid 
targets that were also selected as DEGs. Among these, miR-
652-5p, a conserved member of the miR-652 family, plays 
a role in controlling several cellular processes, including 
apoptosis, proliferation, angiogenesis, and glycolysis 
(23,24). Wang et al indicated that miR-652-5p is associated 
with AD progression (25). Another miRNA, let-7a-5p, 

Table 1. Sensitivity, Specificity, and Area Under the ROC for the Three Genes 
Using a Multilayer Perceptron Neural Network

Gene Name AUC Sensitivity Specificity

hsa-miR-374b-5p 0.728 0.714 0.667

hsa-miR-15b-3p 0.802 0.857 0.696

hsa-let-7a-5p 0.778 0.750 0.833

All miRNAs 0.751 0.600 0.913

hsa-let-7a-5p and 
hsa-miR-15b-3p

0.848 0.917 0.692

Note. ROC curve: Receiver operating characteristic curve. AUR: Area under 
the curve.

Figure 4. The Area Under the ROC Curve of (a) hsa-let-7a-5p and hsa-miR-15b-3p, (b) hsa-let-7a-5p, (c) hsa-miR-374b-5p, and (d) hsa-miR-15b-3p. Note. ROC 
curve: Receiver operating characteristic curve
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a member of the let-7 family, is involved in regulating 
critical BPs such as apoptosis and inflammation. It plays 
a role in controlling inflammatory injury in microglia and 
neuronal autophagy (26). Furthermore, the findings of 
Zhao et al demonstrated that miR-15b-3p targets WNT5a, 
thereby regulating neuronal and astrocyte differentiation 
(27). Mir-27b-5p is known to be involved in the control 
of several BPs, such as proliferation, apoptosis, and 
migration (28,29). MiR-374b-5p plays a crucial role in 
neuronal stem cell differentiation and proliferation and 
has been associated with neurodegenerative changes and 
neuroinflammation in AD (30). Additionally, mir-93-
3p, which is located on chromosome 13q31.3, was found 
to be dysregulated in cerebrospinal fluid after certain 
conditions. Moreover, the expression level of this miRNA 
was found to be reduced in the serum and cerebrospinal 
fluid of patients with neurosyphilis (31,32).

Furthermore, our findings confirmed that among the 
identified hub genes, EGFR and SETD7 were the most 
common targets of miR-15b-3p and let-7a-5p, respectively. 
Additionally, SV2B was identified as a common target 
of miR-93-3p and miR-27b-5p. Furthermore, SYP and 
TLR4 were found to be the targets of miR-374b-5p and 
miR-15b-3p, respectively. Notably, SETD7, functioning as 
a lysine methyltransferase, has implications in the post-
translational modification of tau protein, influencing its 
subcellular localization (33). SV2B plays a crucial role 
in regulating neurotransmitter release, which is widely 
dispersed everywhere in brain. Moreover, this gene is 
crucial in mitigating the toxicity associated with amyloid 
(34). The protein encoded by EGFR is a transmembrane 
tyrosine kinase receptor that regulates various 
cellular processes, including apoptosis, proliferation, 
differentiation, and adhesion. This gene is crucial for the 
survival of neuronal cells, and its polymorphisms have 
been associated with AD (35). SYP encodes an integral 
synaptic vesicle membrane protein that is involved in 
synaptic plasticity and cognitive impairment (36). TLR4, 
as a member of the toll-like receptor family, is involved in 
controlling neuronal plasticity, proliferation of neuronal 
precursor cells, and neuroinflammation (37). 

The GO enrichment analysis indicated that 
chemical synaptic transmission, neurotransmitter 
secretion, glutamate secretion, inflammatory response, 
neuropeptide signaling pathway, calcium ion binding, 
calmodulin binding, and neuropeptide hormone activity 
terms were significantly enriched. The results of similar 
studies revealed that chemical synaptic transmission, 
neurotransmitter secretion (38), inflammatory response 
(39), neuropeptide signaling pathway (40), calcium ion 
binding (41), calmodulin binding (42), and neuropeptide 
hormone activity (43) were associated with AD.

Furthermore, the KEGG pathway analysis indicated 
that retrograde endocannabinoid signaling, GABAergic 
synapse, nicotine addiction, neuroactive ligand-receptor 
interaction, staphylococcus aureus infection, cholinergic 
synapse, glutamatergic synapse, calcium signaling 

pathway, synaptic vesicle cycle, and morphine addiction 
terms were significantly enriched. The results of related 
studies in the molecular mechanism of AD showed that 
GABAergic synapse (44), retrograde endocannabinoid 
signaling (45), nicotine addiction, morphine addiction 
(46), Staphylococcus aureus infection (47), cholinergic 
synapse (48), glutamatergic synapse pathway (49), calcium 
signaling pathway (50), and synaptic vesicle cycle (51) 
were significantly enriched.

Finally, the findings of the current study revealed that 
the AUC and sensitivity of the MLP-NN constructed 
by both hsa-let-7a-5p and hsa-miR-15b-3p in detecting 
Alzheimer’s patients were remarkably high, indicating 
their potential as non-invasive diagnostic biomarkers for 
AD through the ANN approach.

Conclusion
In summary, the constructed ANN, utilizing the 
expression levels of plasma miR-15b-3p and let-7a-5p, 
could serve as a non-invasive diagnostic tool with high 
sensitivity. Further, our results suggest that miR-15b-3p, 
by targeting EGFR and TLR4, and let-7a-5p, by targeting 
EGFR, may play essential roles in AD.
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