
Background

Molten and Pre-molten Globule Structure
Proteins routinely acquire their native structure upon 
a folding process. A protein in the native state is usually 
at the lowest minimum of energy, which is also the most 
stable conformation of the polypeptide (1). It is suggested 
that most small proteins are unfolded through a two-state 
mechanism, namely, the folding and unfolding procedure 
(2, 3). On the other hand, some other proteins are 
unfolded via a three-state procedure. During the three-
stage unfolding procedure, protein goes between the native 
and the unfolded structures by at least one intermediate 
condition (4). The molten globule (MG) structure is the 
most important and well-known intermediate (5). There 
are clear reports on the physical characteristics of MG 
structures of several proteins. Based on some reports, 
the MG structure, which is also the more condensed 
intermediate, is as condensed as the native protein (6, 
7). It has a native-like secondary structure, but no rigid 
tertiary structure. It is notable that the initial intermediate 
state is non-functional and has no rigid tertiary structure. 
However, it is approximately as compact as the native 
protein and has a very frequency secondary structure (8, 

9). MG can be generated by a protein treatment using 
acid solutions, mild denaturants, or by removing protein-
bound prosthetic groups or metal ions, as well as protein 
chain truncation (9). It is also suggested that some proteins 
unfold through a four-state unfolding process in which the 
native protein unfolds via two intermediates including MG 
and pre-MG states (10). The term “pre-molten globule” 
was first proposed by Jeng et al, when they discovered that 
the cytochrome c denatured in acidic condition cannot be 
described by a three-state procedure including the native, 
MG, and unfolded states (11). Although the pre-MG is 
a less compact intermediate, it is relatively compacted 
with a substantial secondary structure (12). Several reports 
indicate that the protein intermediate may play important 
roles in defining aberrant protein aggregation and amyloid 
production when having surface-exposed hydrophobic 
clusters (13). The pre-MG conformation normally appears 
under stronger denaturing conditions. It is more flexible 
than the MG intermediate structure and is composed 
of lower surface-exposed hydrophobic residues (14). 
Additionally, the pre-MG structure having 1-anilino-8-
naphthalene sulfonate emission intensity is lower than that 
of the MG state and its secondary structure has a peak at 
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Abstract

The conversion of a protein from its native conformation to the pathogenic form is a critical event in 
the pathogenesis of several neurodegenerative disorders such as Alzheimer’s (AD), Parkinson’s, and 
Huntington’s diseases, along with type II diabetic mellitus. Although there are several reports on the 
mechanism of protein aggregation, the actual conformation playing a part in the pathogenicity is yet 
unclear. Accordingly, the present study summarizes the early pathogenic conformation resulting in 
several protein aggregations. It is well-documented that a pre-molten globule (MG) structure appears at 
the early stages of some proteins. Pre-MG is one of the intermediate structures, which is formed during 
some protein unfolding processes. In addition, it is shown that the pre-molten structure is more flexible 
than the mature MG one and thus, protein easily rearranges to form amyloid fibrils in this conformation. 
Therefore, protein aggregation is halted by preventing the pre-MG structure. The strategy of protein 
aggregation prevention has profound implications in fighting the devastating disorder.
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200 nm in circular dichroism (CD) spectra.

Protein Aggregation
Proteins are of crucial importance in any living organism 
and any disturbance or abnormality in their function 
would result in various disorders. In particular, the inability 
of proteins to adapt to their new structures causes several 
disorders. Apparently, such misfolding leads to some adverse 
consequences such as amyloidogenesis (15, 16). There 
are several known proteins that tend to be misfolded. In 
addition, several known factors may contribute to protein 
misfolding, including protein-protein interactions, point 
mutation(s), toxin exposures, abnormal posttranslational 
modifications, trafficking, and oxidation. All these features 
can occur separately or simultaneously (17, 18).

The protein conformational disorders not only affect 
a single organ but also several tissues, among which 
neurodegenerative disorders and amyloidosis are the 
biggest groups (19). In other words, natively flexible 
protein conversion into fibrillated forms would result 
in the occurrence of misfolding diseases (16, 20). Such 
fibrils share common properties such as core cross-β-sheet 
structures in which β-strands are protruded out of the long 
axis vertically (21). Morphologically, a fibril with 4-13 
nm diameter is comprised of 2-6 and 2-5 nm unbranched 
protofilaments which are twisted together (22). Despite 
the structural and morphological similarities of amyloid 
proteins, the polypeptide structures are different and 
may consist of β-sheets, α-helix, β-helix, or even totally 
disordered (16). It was previously demonstrated that only 
the proteins that contain amyloid core motifs, are capable 
of fibril formation. However, recent reports have shown 
that almost any given protein can fibrillate as long as the 
required circumstances are provided (23, 24). Considering 
the structural variety of polypeptides and the consequent 
fibrils similarities, proteins go through noticeable 
conformational changes upon fibrillation (25). For 
instance, the fibrillation process is not only restricted to 
the rearrangement of tertiary structure but also it requires 
partial unfolding when a globular protein is intended to 
convert into a fibril one (26). In other words, the ability of 
these proteins for fibrillating and making intermolecular 
connections (e.g., hydrogen or hydrophobic bonds) 
originates from their partially unfolded structure (27). The 
structures of such intermediates vary from one to another, 
which may result in distinctly determined fibrils (28, 29). 
However, every single fibrillary protein may have different 
quantities of ordered structures. In general, insoluble 
proteins are the result of conformational changes in the 
least-ordered intermediate structure despite unfolded 
proteins arising from precursors with the most-ordered 
structure (30).

Recently, there has been an increase in the number of the 
soluble protein lacking 3-D structure, under experimental 
conditions. These proteins are termed as intrinsically 

unstructured and have a flexible structure similar to that 
of globular proteins (31). There are two major natively 
unfolded proteins including extended-disorder and 
collapsed-disorder proteins. In the first group, the structure 
comprises a resemblance to coil or pre-MGs while the 
collapsed-disorder proteins have no such structures (32-
34). In the following section, several amyloidogenic 
proteins are explained, in which amyloid fibril formation 
was linked to their folding procedure. It is converted into a 
‘misfolded’ conformer and then amyloidogenesis.

Protein Fibrillation From Pre-molten Globule Structure 
Alpha-Synuclein Fibrillation
Synucleinopathies are a class of neurodegenerative diseases, 
which is resulted from fibrillation and the subsequent 
deposition of α-synuclein proteins in the central nervous 
system (35). The amino acid sequence of α-synuclein 
represents particular physical properties similar to any 
other natively unfolded protein. It is an intrinsically 
disordered protein, as long as physical circumstances are 
provided, including neutral pH and low to moderate 
ionic strength (36). It has been a matter of debate that 
which forces and factors are required to convert a natively 
unfolded protein into an ordered one. Natively unfolded 
proteins contain low overall hydrophobicity and high 
net charge. Thus, the adverse physical conditions should 
be provided to induce a protein folding. For example, a 
condition in which the net charge decreases upon a pH 
reduction while the overall hydrophobicity enhances by a 
temperature increase (36). It is shown that a pH reduction 
from 7.5 to 3 would result in β-sheet formation, as well as 
the development of a new band in the region of 1626 cm-1 
in Fourier-transform infrared spectra. In addition, there has 
been an increase in the 1-anilino-8-naphthalene sulfonate 
(ANS) fluorescence intensity, as well as a large blue shift 
of the ANS fluorescence maximum (from ~515 to ~475 
nm) due to acidic pH. Accordingly, this demonstrates the 
conversion of natively unfolded protein into its ordered 
compact structure with soluble hydrophobic clusters 
(36). Thus, α-synuclein possesses an unfolded structure as 
long as the neutral pH is provided. On the other hand, 
the unfolded structure shows some residual or helical 
domains, but not a random structure. This would lead to 
a partial compaction (37). The partially unfolded structure 
of α-synuclein for conversion into a folded one, with a 
pre-MG state, is either a pH decrease or a temperature 
increase (36). There is a hydrophobic driving force that 
causes protein folding, resulted from the negative net 
charge reduction upon a pH decrease. Furthermore, the 
ordered structure could result from a high temperature, 
which increased the hydrophobicity (36, 38). Therefore, 
the protein contains a pre-MG-like partially folded (PF) 
structure when providing a low pH or high temperature 
(36). Not only α-synuclein can produce a monomeric 
structure, but also it is capable of producing oligomers 
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and aggregates, as long as the temperatures are suitable 
(39). The oligomer formation, which is also temperature-
dependent, would demand a tiny reversible increase in 
its ordered secondary structure. Notably, such oligomeric 
structures are proven to have intensive similarity with the 
pre-MG-like PF monomeric conformer, resulting from a 
low pH and high temperature (39). 

Aβ Fibrillation 
The senile plaque is considered as one of the major 
pathological factors that is observed in Alzheimer’s disease 
(AD) brain and is composed of amyloid β peptides in the 
extracellular matrix. Aβs are generated from an amyloid 
precursor protein, which have 40 to 42 residues. Moreover, 
Aβ proteins indicate neurotoxic properties, leading to 
this amyloidogenic disease. Aβ1-42, with a hydrophobic 
N-terminal, is unfolded at the first stages of fibrillation 
just like Aβ1-40. However, both of them possess a pre-MG-
like structure after a partial refolding during the fibrillation 
process (25, 40).

Tau Fibrillation
Tau protein is a microtubule-associated protein and 
stabilizes microtubule polymers. Additionally, it has six 
distinct isoforms resulted from the alternative splicing of 
a single mRNA. In addition, it is a phospho-protein and is 
relatively phosphorylated in the physiological state but its 
hyperphosphorylation would be in microtubule dissociation 
and aggregation, resulting in neurodegeneration upon the 
AD process (41). During such an aggregation process, 
hyperphosphorylated tau proteins are converted into both 
twisted paired helical filaments and non-twisted straight 
filaments. According to reports, tau proteins are not only 
highly phosphorylated but also their disordered structure 
with a tendency for self-assembly transforms into a pre-
MG-like structure and subsequently, 6 full-length tau 
proteins (42, 43). 

Amylin 
Two major pathological hallmarks mediating the 
development of diabetes type II include amyloidogenesis 
and insulin resistance. Amyloid fibrils are composed of 
natively unfolded amylin with 37 amino acid residues. 
Notably, a pre-MG-like intermediate with a PF structure is 
observable upon the initial aggregation process of amylin 
fibrillation (44, 45).

ABri Peptide 
Familial British dementia is an age-dependent disease that 
is accompanied by spasticity and cerebellar ataxia. There are 
accumulation of both paired helical filaments,(PHFs) and 
ABri peptides. The ABri peptides comprised of 34 residues 
are located in cerebral blood vessels and brain parenchyma 
(46). In this case, a point mutation occurs in the stop codon 

of BRI(a precursor of ABri protein), resulting in a longer 
peptide compared to the normal healthy one with random 
coil and β-sheet structures in acidic pH (4.9). Interestingly, 
the protein has a pre-MG-like structure at neutral pH. At 
this pH, this protein converts into amyloid fibrils (47, 48). 

Prion Proteins 
Prion diseases are a class of neurological disorders with a 
pathogenicity of the spongiform brain and the excessive 
aggregation of prion proteins with a β-sheet structure 
(PrPsc) in the central nervous system. PrPsc have an 
unstructured N-terminal and α-helical C-terminal regions 
and are localized in cell membranes. However, the PrPsc 
aggregation reflects the prion disease. The aggregated form 
is a prion protein isoform resulted from the conversion of 
the C-terminal α-helical structure to β-sheets after a partial 
unfolding or pre-MG structure. Furthermore, the last 50 
residues in the disordered N-terminal region of PrPc are 
proved to play a pivotal role in β-sheet structure formation 
(49). 

Polyglutamine Repeat Diseases
Recently, all familial diseases, including Huntington’s, 
SBMA, DRPLA, SCA1, 2, 3, 6, and 7, have been known as 
trinucleotide repeat disorders due to the repetition of CAG 
codon in the pertaining genes resulting from a duplicate 
mutation (50). For example, the CAG codon is excessively 
repeated in the huntingtin gene in Huntington’s, leading 
to polyQ regions with more than 38 repeated glutamines, 
and eventually, reflects fibrous deposits and neuronal 
death (51). Generally speaking, polyGln peptides with 5, 
15, 28, and 44 residues indicate a random coil structure 
while those with more than 37 residues possess an ordered 
structure (52).

Calcitonin and Medullary Thyroid Cancer
Calcitonin is a hormone with 32 residues and is secreted by 
the C-cells of the thyroid gland. Its aggregation is shown to 
bring about either sporadic or inheritable medullary thyroid 
cancer (53). During the fibrillation process, the α-helical 
and random coil structures of calcitonin are indicated to 
convert into the β-sheet structure. However, there is a pre-
MG-like structure in the first stages of fibrillation (54, 55).

Prothymosin α
This acidic protein structure has almost 50% aspartic 
and glutamic acid composition and is transformed from a 
random coil to a pre-MG-like structure at low pH values. 
The conversion is due to the lack of aromatic and cysteine 
residues or hydrophobic aliphatic amino acids. However, 
such a conversion from a natively unfolded protein to a 
PF polypeptide fails to participate in the appearance of 
amyloidogenesis diseases (56). Furthermore, prothymosin 
α has elongated fibrils, with ribbon-like structure at low 
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(<3) pH values (57, 58). 

Apolipoprotein C-II
ApoC-II is a protein that is secreted in plasma and 
functions as a lipoprotein lipase co-factor. In addition, 
it has an α-helical structure in the presence of sodium 
dodecyl sulfate as a lipid mimetic polymer. However, it 
has no ordered structure in the absence of lipid molecules. 
ApoC-II turns into the pre-MG-like structure, as long as 
phospholipids are added in sub-micellar concentrations 
in the absence of any sodium dodecyl sulfates. On the 
other hand, critical micelle concentration treatment with 
phospholipids leads to the formation of α-helical structure, 
prohibiting fibril formation (59, 60). 

Core Histones 
Core histones have a MG-like structure under high acidic 
conditions (pH=2). However, they possess 4 different 
structures under various physical conditions, all of which 
have an aggregation tendency. However, core histones are 
converted into non-fibrillar aggregates when the protein 
solution is saturated (61).

Apo Carbonic Anhydrase
Bovine carbonic anhydrase II protein (CA, EC 4.2.1.1) 
contains 259 amino acids and a molecular weight of 30 000 
Daltons. This protein naturally occurs monomerically 
and contains zinc ions in its active site. Further, the CA 
is a monomeric protein and consists of a chain with no 
post-translational modifications. Carbonic anhydrase 
catalyzes the reaction of CO2 hydration to bicarbonate 
and is the highest amount of protein in the red blood cell 
after hemoglobin. There are many similarities between the 
human and bovine species of this enzyme. In its structure, 
the zinc atom binds to three histidines (Figure 1). 

The HCA II and BCA II proteins are susceptible to 
accumulation in the MG, which is highly specific and 
occurs in 4-7 beta strands containing the hydrophobic core. 
Apo carbonic anhydrase shows a pre-MG structure with 
the capacity for fibrillation over strong acidic pH values 
(~2.4). However, an MG form becomes abundant when 
the pH rises to ~3.6, resulting in amorphous aggregates. 
It is notable that numerous proteins undergo amyloid 
fibrillation probably through PMG intermediate structure 
formation (62). Furthermore, apocarbonic anhydrase 
moves through amyloid assemblies by a mechanism 
without nucleation. After 12 hours of incubation, the 
amount of ThT emission intensifies, and then until day 4, 
an increase in ThT emission increases by a slower process. 
Moreover, the increase in ThT emission continues more 
rapidly after day 4, and eventually, the emission remains 
constant on day 7 and even decreases in the following days 
(63). 

Fink demonstrated that the closer structure to the native 
protein tends to be amorphous aggregate. According to 

Fink’s theory, carbonic anhydrase in the molten state is 
more like the normal state of the protein, which further 
moves toward amorphous aggregates (Figure 2). Many 
reports emphasize the structure of the pre-molten as the 
structure that leads to further amyloid aggregation. In 
other words, the structure of intermediates leading to 
aggregation varies in different proteins or in one protein 
under different conditions (64). 

Carboxymethylated α-Lactalbumin
α-Lactalbumin (α-LA), as a part of lactose synthetase, 
possesses an MG-like structure at acidic pH. This Ca2+-
binding protein also displays the same structure in high 
temperatures. Furthermore, protein stability depends on 
the number of disulfide bridges in the peptide sequence 
(65). It is shown that 1SS-α-LA is a prevailing form of this 
acidic protein. Additionally, some secondary structures 
remain while no tertiary structures can be found upon a 
reduction in disulfide bridges. Subsequently, secondary 
structures take part in the fibril formation after conversion 
into a pre-MG-like state (66).

Apo Cytochrome C552
Apo cytochrome c is an electron-transfer protein, which 
goes through a fibrillation process upon a particular 
mutation. The mutation replaces 2 cysteine residues with 
alanine, breaking the covalent bond between the heam 
prosthetic group (67). The holo-protein indicates a helical 
structure although the consequent cysteine residues devoid 
of any prosthetic groups possess a pre-MG-like structure, 
leading to the amyloid formation (68).

SH3 Domain at Acidic pH
SH3 is a 60-to-85 residue domain which plays a pivotal role 
in regulating protein-protein interactions at neutral pH 

Figure 1. The Structure of Bovine Carbonic Anhydrase (1V9E pdb 
file). 
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and has a β-barrel structure comprised of 5 or 6 β-strands. 
However, such a folding structure disappears at acidic pH 
and is transformed into a typical state of unfolded proteins, 
namely, monomeric A form. The monomeric form has a 
tendency for turning into a pre-MG-like structure. Such a 
folded protein is then accumulated as amyloid fibrils (69).
 
N-Terminal Domain of Escherichia coli HypF
The N-terminal domain of E. coli HypF is populated at low 
pH in a conformational state. The emergence of various 
biochemical and biophysical techniques demonstrates 
that this state is almost unfolded and contains more 
hydrophobic clusters, as well as secondary structures. It is 
also more compact than a random coil-like structure and 
less organized than an MG state. A stronger ionic solution 
would induce the amyloid-like protofibril formation of 
such a pre-MG state. These findings show that a pre-MG 
state can be one of the precursor states of the amyloid 
formation. Although several other conformational 
states might exist, the pre-MG state is more likely the 
amyloidogenesis initiator (70).
Amyloidogenesis of Wild Type Hen Egg-White Lysozyme 
Under oxidative stress, the level of enzyme glyoxalase 
diminishes, which increases the serum concentration of the 
glyoxal. There is a three-step transition in the interaction 
between glyoxal and Hen egg-white lysozyme including 
pre-molten and MG states formed on days 7 and 15 of 
incubation, respectively. The structures are characterized 
by an increase in the ANS fluorescence intensity compared 
to the native state. The longer incubation of MG states 
would result in the aggregates, which have an increase in 
ThT fluorescence intensity, as well as a red shift in Congo 
red absorbance, the loss of signals at 284, 290, and 294 nm 
in the near-UV CD spectra, and a negative ellipticity peak 
at 217 nm in the far-UV CD (71).

Malaria Surface Protein 2 
Merozoite surface protein 2 (MSP2) is one of the most 
frequent proteins of the merozoite stage of Plasmodium 
falciparum. MSP2, as a glycosylphosphatidylinositol-
anchored protein, is composed of conserved N- and 
C-terminal domains with a variable central region. It is 
demonstrated that this protein is intrinsically unstructured 
and has a high tendency for fibrillation, in which the 

N-terminal domain plays a crucial role, confirmed by 
CD spectroscopy. In addition, MSP2 has a large effective 
hydrodynamic radius which is consistent with an intrinsic 
pre-MG state under physiological conditions, confirmed 
by pulsed-field gradient NMR diffusion measurements. 
This was further confirmed by sedimentation velocity 
studies (72).

Conalbumin 
The conalbumin structure can be changed by altering the 
dielectric constant, likely upon fluoroalcohols, resulting 
in protein aggregation treatment. There is a maximum 
protein aggregation in 15% (v/v) trifluoroethanol (TFE) 
and 3% (v/v) hexafluoroisopropanol (HFIP). The 
aggregation induced by TFE and HFIP has amyloid-
like properties, confirmed by ANS, ThT binding, and 
transmission electron microscopy. Based on the reports, 
the higher concentrations of TFE and HFIP would result 
in more helical structures. It is clear that the production 
of a partially structured intermediate state precedes the 
aggregation process, showed by Far-UV CD, intrinsic 
fluorescence, along with ANS and ThT fluorescence. It 
is shown that CA goes through different conformational 
states such as the pre-MG at a pH of 4.0 and the MG at 
a pH of 3% upon an acid unfolding process, indicating a 
strong protein aggregation (73).

Rifampicin Induces Ovalbumin Aggregation
Ovalbumin is a protein that is secreted into a hen 
oviduct. It is reported that rifampicin (6 µm) induces the 
aggregated state while the pre-molten and MG states could 
be created at 3 µm and 5 µm concentrations of rifampicin, 
respectively. Native ovalbumin consists of a β-sheet-rich 
structure with a negative ellipticity peak at 217 nm in 
CD spectra when incubated with 6 µm rifampicin. The 
aggregation is further confirmed by a red shift of 50 nm in 
the Congo red binding assay, an increase in the absorbance 
at 450 nm and a 10-fold increase in the ThT fluorescence 
intensity compared to the native state (74).

Human Profilin-1 
There are numerous missense mutations in the profilin-1 
gene, which are connected to the early stage of familial 
amyotrophic lateral sclerosis. The mutations are addressed 

Figure 2. A Schematic Pattern Representing Protein Aggregation From Different Protein Structures. 
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to the production of the intracellular inclusions of mutant 
proteins. Furthermore, the mutations would result in the 
destabilization of the native protein and the fully-folded 
state. However, it remains uncertain how these mutations 
cause misfolding and self-assembly. It is reported that upon 
a refolding process, wild-type profilin-1 transiently goes 
through a PF state devoted to hydrophobic clusters that 
are exposed to the solvent without any secondary structure. 
This structure is stable at a pH of 7. Nevertheless, it 
becomes significantly accumulated at lower pH values. 
Interestingly, the mutations associated with fALS do not 
modify the profilin-1 refolding mechanism, but stabilize 
the PF state. The mutation-induced stabilization of a 
PF state may cause profilin-1 aggregation, reflecting 
the pathogenicity of the mutations. These observations 
introduced the PF state as a pre-MG conformational state, 
which has a free energy value similar to that of the unfold 
state. When the secondary structures are abolished, it also 
has solvent-exposed collapsed hydrophobic clusters (75).

Conclusion
This review focused on the relationship between amyloid 
fibril formation and protein folding intermediate. Despite 
extensive considerations, it remains uncertain how soluble 
proteins are converted into amyloid fibrils. To answer 
this question, it is crucial to determine the early stage 
of amyloidogenesis. The intermediate state likely plays 
a role in almost every amyloidogenesis. In addition, the 
intermediates of the protein folding pathway have an 
essential role in the production of amyloid aggregates. 
Two important well-known intermediates in the folding 
pathway are MG and pre-MG. The MG structure is shown 
as one of the main intermediate forms in a protein folding 

process (76). Further, it is a PF conformation, which is 
characterized by the presence of a significant secondary 
structure arranged in an overall native-like fold. Moreover, 
it has a compact shape and great surface-exposed 
hydrophobic clusters (77). Furthermore, MG could be 
generated when a protein is exposed to acid solutions or 
mild denaturants. Moreover, it can be formed by losing 
a prosthetic group of proteins or metal ions, as well as 
the protein chain cleavage (9). It was shown that surface-
exposed hydrophobic clusters would cause the proteins to 
play important roles in protein aggregation and amyloid 
formation (13). The pre-MG conformation, which usually 
forms under a more intense denaturing state, contains a 
lower ratio of surface-exposed hydrophobic residues and is 
more flexible than the MG intermediate structure (14). It 
seems that a pre-MG structure initiates the amyloidogenesis 
in numerous proteins even if the protein has no intrinsic 
regular structure. There are limited protein structures in 
the pre-MG and the hydrophobic domains are gathered 
together. On the other hand, the pre-MG has a flexible 
structure, resulting in protein-protein interactions, and 
eventually, aggregation. Thus, assuming that all proteins go 
through a pre-MG state during the fibrillation process, the 
present study aims to design specific sensors to detect the 
structure for amyloidogenic disorders in the early diagnosis 
(Figure 3). Furthermore, the conclusion has profound 
clinical implications in finding the right therapeutic target.
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