
Background
Using natural compounds for producing and preserving 
food has attracted great attention. The exopolysaccharides 
(EPS) are high molecular weight polysaccharides 
secreted by plants, seaweeds, and microorganisms to 
the surrounding environment. EPS generally consist of 
monosaccharides and other compounds such as acetate, 
phosphate, pyruvate, and succinate (1). Based on the 
type of monosaccharide, EPS are divided into two groups 
of homopolysaccharides and heteropolysaccharides. 
Homopolysaccharides are composed of one type of 
monosaccharide, while heteropolysaccharides are made 
up of two or more types of monosaccharides (2). Glucose, 
galactose, mannose, N-acetylglucosamine, N-acetyl 
galactosamine, and rhamnose are prominent components 
of these heteropolymers (2).

Various groups of microorganisms such as bacteria 
(3,4), cyanobacteria (5), fungi (6), and microalgae (7) can 
produce EPS. The genes accountable for production are 
often clustered in the genome of the relevant organisms (8). 
Biosynthesis of microbial EPS occurs during the growth 
period and is regulated by various enzymes and proteins. 
Production of EPS is vital to microorganisms as they play 
critical biological roles in cell protection, attachment to 
solid surfaces, cell aggregation, and cell to cell interactions 
(3,9). Table 1 summarizes the general characteristics of the 
principal EPS.

EPS can form thick pseudoplastic liquids, and they 
have been consistently applied in food (emulsifier, 
stabilizer, viscosifier, and moisture retention), cosmetic 
(anti-aging activity and reduction of allergic reaction), 

pharmaceutical (blood flow improving and drug delivery 
system), and textile (better water holding capacity and 
flame retardancy) industries (1,10-13). In addition to the 
technological advantages, some EPS promote human health 
by different mechanisms such as detoxification of heavy 
metals, decrease of blood cholesterol levels, provision of a 
fermentable substrate for intestinal microflora (prebiotic), 
and modulation of the immune response (4,14). The 
present review provides the readers with an overview of 
the characterization and commercial production of some 
microbial EPSs used in the food industry and their health 
benefits. Figure 1 highlights the key parts of this review.

Prominent  Microbial EPS and their Properties in the 
Food Industry
The microbial EPS are subdivided into homopolysaccharides 
and heteropolysaccharides. 

Homopolysaccharides
Homopolysaccharides are divided into two general classes 
of glucan and fructan.

Glucans 
Glucans, as described below, are high molecular weight 
polymers comprised of glucose units linked by different 
glycosidic bonds.

a. Dextran 
Dextran is a high-molecular-weight compound produced 
from sucrose by the dextransucrase enzyme of bacteria 
(35,36). Dextran is generally regarded as a safe (GRAS) 
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Table 1. The Main Characteristics and Structures of Microbial Exopolysaccharides 

Microbial EPS Name
Chemical 
Structure

Structure
Solubility i 
Water

Molecular 
Weight (D)

Producer Organism References

1. Homopolysaccharides

Glucan
 

Glucan

Dextran α (1→6) Glc  Branched Variable 103 - 107 Leu., Strep., and 
Acetobacter

15

Pullulan
α (1,4) Glc 
α (1,6)

Linear Soluble
362× 103-
480 ×103

Aureobasidium spp., 
Tremella mesenterica, 
Cytaria spp., 
Teloschistes flavicans, 
Rhodototula bacarum 
and  Cryphonectria 
parasitica

16

Curdlan β (1,3) Glc Linear Insoluble 2× 106

Alcaligenes faecalis 
var. myxogenes, some 
rhizobium strains, and 
Cellulomonas spp

17,18 

Alternan
α (1,6) Glc
α (1,3)

Branched
Highly 
soluble

l06–l07 Leu. citreum and Leu. 
mesenteroides 

19

Reuteran
α (1,4) Glc
α (1,6)

Branched Soluble Lb. reuteri 20

Scleroglucan
β (1,3) Glc 
β (1,6)

Branched Soluble 6 × 106  Sclerotium rolfsii 21

Cellulose β (1,4) Glc Linear Insoluble
3 × 105 - 
2 × 106

Komagataeibacter, 
Agrobacterium, 
Rhizobium, Salmonella 
and Sarcina

1, 15, 22

Fructan
 

Fructan

Levan
β (2,6), 
β (2, 1) Fru

Branched Soluble 104 - 108

Bacillus sp., Strep. 
spp., Zymonas 
mobilis, Arthrobacter 
ureafaciens, 
Halomonas sp., 
P. fluorescens, 
Serratia Levanicum, 
Microbacterium 
laevaniformans, 
Lb. spp., B. 
stearothermophilus 

15, 25- 28 

Inulin
β (2,1) Fru

Linear
Soluble in 
hot water

5 × 102 - 
1.3 × 104

Lb. johnsonii, Strep. 
mutans strain JC2, Leu. 
citreum CW28 and Lb. 
reuteri 121 

15, 29 

2. Heteropolysaccharides

 

Kefiran

(1 ,6)- Glc, (1,3) 
Gal, (1,4)- Gal, 
(1,4) Glc, (1,2, 
6)- Gal,

Branched Soluble 534× 103

Lb. kefiranofaciens, 
Lb. kefirgranum, Lb. 
parakefir, Lb. kefir and 
Lb. delbrueckii subsp. 
Bulgaricus 

30,31

Xanthan

 (1,4) β- Glc, 
β- Man-(1,4)-β- 
Glc-(1,2)-α- 
Man

Branched Soluble 3 × 106 Xanthomonas 
campestris

20, 32

Gellan

1,3-β-D-Glc; 
1,4-β-D-Gul; 
1,4-β-D-glc; & 
1,4-α-L-Rha.

Linear
Insoluble in 
cold water

5 × 105 Sphingomonas elodea 33

Alginate
β (1,4)-D-manu.; 
1,4 α-L-Gul

Linear Soluble
33× 103 - 
400× 103 

P. aeruginosa, 
Az. vinelandii 

32

Viilian

Glc β (1,4) Gal 
β (1,4) Glc; α-L-
Rha (1,2) Gal 
& Gal α- (1,3) 
phos

Linear
Lac. lactis subsp. 
cremoris

34

Glucose: Glc; Fru: Fructose; Gal: Galactose; Man: Manose; Manu: Mannuronic acid; Gul: Guluronic acid; Rha: Rhamnose; Leu: Leuconostoc; Lb: Lactobacillus; 
Lac: Lactococcus; P: Pseudomonas; Az: Azotobacter; Alc: Alcaligenes; Sin: Sinorhizobium. Strep: Streptococcus.

https://en.wikipedia.org/wiki/Sphingomonas_elodea


                                                                                                         Avicenna J Med Biochem, Volume 9, Issue 2, 2021 109

           Microbial exopolysaccharides in the Food

compound for animal feeds, medicines, and human 
foods by Food and Drug Administration (FDA) (37). 
The European Commission allows using  Leuconostoc 
mesenteroides  dextran in the bakery to improve the 
softness, crumb texture, and loaf volume (38). Oil recovery 
enhancement (39), biodegradable coatings or films (40), 
and biosensors for the analysis of different biointeractions 
(41) are some other uses of dextran. Dextran reveals high 
water solubility and produces low viscosity solutions, so 
it can be added to foods at high concentrations without 
excessive viscosity. Adding dextran can raise the glass 
transition temperature of ice cream mixes and stabilize the 
final product. It prevents sugar crystallization, increases 
moisture retention, retards oxidation, and maintains the 
flavor and appearance of various foodstuffs (42,43). It also 
has some medical benefits, such as blood coagulation, 
treatment of hypovolemia, and management of iron 
deficiency anemia (44).

b. Pullulan 
Pullulan is a neutral, non-toxic, non-mutagenic, and non-
carcinogenic water-soluble polysaccharide consisting of 
maltotriose repeating units (45). It is considered a GRAS 
powder, which can be used as a replacement for starch in 
pasta or baked products (46,47). 

Pullulan is a candidate for packaging film in the food 
industry due to its high solubility in cold and hot water, 
mechanical strength, and resistance to pH changes. 
Pullulan films are colorless, tasteless, biodegradable, 
oxygen impermeable, high adhesive (48,49), flexible (50), 
highly impermeable to oxygen and oil (51,52), and heat-
sealable (52). Its physical characteristics are dependent 

on the composition, for instance, adding xanthan and 
locust bean gums reduces the mechanical properties of 
the pullulan film (53). However, Gounga et al proposed a 
whey protein isolate pullulan as a coating to keep the fresh 
chestnut fruits from moisture loss and color changes (54). 
Pullulan-based edible films can also serve as a carrier for 
flavors and antimicrobial substances. The pullulan films 
incorporated with meadowsweet flower extract (52) and 
sweet basil extract (55) can retard the growth of Rhizopus 
arrhizus on the apples without changing the color during 
storage. The number of Staphylococcus aureus, Aspergillus 
niger, and Saccharomyces cerevisiae in baby carrot was 
reduced at least by 3 log CFU/g using pullulan films 
containing caraway essential oil (CEO). The slow release 
of included antimicrobial agents from the film matrix 
increases the bacterial lag phase, decreases microbial 
growth rate in food, and improves its quality (56). 
Incorporation of pullulan film with sakacin A, essential 
oils (oregano and rosemary), or nanoparticles (zinc oxide 
or silver) was useful against pathogenic microorganisms 
such as S. aureus, L. monocytogenes, E. coli O157: H7, and 
S. typhimurium and improved the safety of refrigerated, 
fresh, or processed meat and poultry products (57,58).

Pullulan is resistant to mammalian amylases and is 
considered as a dietary fiber in human nutrition (51). 
It can be applied as an additive in low-calorie foods. It 
is predominantly metabolized by  bifidobacteria  (Ryan, 
Fitzgerald, and van Sinderen, 2006), and as a prebiotic, it 
increases the number of bifidobacteria and lactobacilli in 
feces (51,59). However, Chlebowska-Śmigiel et al did not 
detect any motivating effect of pullulan on Bifidobacterium 
and Lactobacillus growth although confirmed increasing 
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Figure 1. Biosynthesis of Microbial Exopolysaccharides and Their Main Uses in the Food Industry.

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Gounga%2C+ME
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the acidifying activity of these bacteria in the presence of 
pullulan which reduced the number of E. coli (60).
 
c. Curdlan 
Curdlan is a neutral and an acidic linear glucan with a few 
intra- or inter-chain (1→6)-linkages (13). It is a colorless, 
odorless, tasteless, and indigestible (61) compound that 
is used in the medical (drug encapsulation, modulation 
of immune responses, etc) and food industries (62). 
Although it is insoluble in water, two types of gel can be 
produced after heating the aqueous suspension. Curdlan 
gel strength depends on the heating temperature, time of 
heat-treatment, and concentration of curdlan. Two types 
of gel including a low-set gel (thermo-reversible gel formed 
between 55-80ºC) and a high-set gel (thermo-irreversible 
gel formed above 80ºC) can be produced. The latter is 
much more stable during retorting, deep-frying, and cycles 
of freeze-thawing (13). It is approved as a stabilizer and 
texturizer in the food industry by the FDA (63). Wu et al 
suggested the use of thermoreversible curdlan gel as a gel 
binder and dietary fiber in fish meat gel-based products 
(64). It increases the chewiness, gumminess, adhesiveness, 
and viscosity of an emulsified meatball (65) and improves 
the quality of tofu, noodles, and surimi because of its 
exclusive resilience and strength through heating and after 
freezing-thawing. Dense cross-links between curdlan and 
the fish proteins during heating improve the textural and 
rheological properties of Alaska pollock surimi gel(66).

Curdlan can reduce fat absorption and moisture loss 
during deep-frying (67) because it forms a reversible 
thermal gel that can capture water and makes it a barrier 
against oil and moisture. There are no digestive enzymes 
for curdlan in the upper alimentary tract; it can be 
considered as a fat mimetic by itself or in combination 
with other hydrocolloids (68,69). Using curdlan in the 
non-fat sausage as a fat mimetic improves the texture and 
flavor of sausage, similar to the 20% fat sausage (69). 

Curdlan has the potential to use as an edible and 
biodegradable film for food packaging. Konjac 
glucomannan/curdlan blend films (70) fish gelatine/
curdlan blend films (71), and curdlan/chitosan membranes 
(72) have been found to show excellent waterproofing 
properties. The latter case also shows an antimicrobial 
effect.

d. Alternan 
Altrenan is a long-chain homopolysaccharide produced 
by the alternansucrase enzyme from sucrose (14). Due 
to its high solubility, low viscosity, and high resistance to 
enzymatic hydrolysis, it is used as a low viscosity bulking 
agent in foods. It can also serve as a prebiotic to form 
symbiotic food (44). 

e. Reuteran 
Reuteran is a water-soluble α-glucan produced by 
reuteransucrase. It can improve the quality of gluten-free 
sourdough and sorghum bread, characterized by a softer 

crumb, extended shelf life, and prebiotic activity (16,74). 

f. Scleroglucan 
Scleroglucan is a water-soluble neutral homopolymer, 
which dissolves in both cold and hot water. Salt 
concentrations and extreme pH conditions (2.5–12) have 
no impact on solution viscosity. Its solution is thermostable 
(stable for 20 hours at 120°C) and shows pseudoplastic 
behavior with a high yield value. It is a good emulsifier 
and stabilizer (dressings and ice creams) and can improve 
the quality of frozen or heat-treated foods. However, it is 
not approved by food safety legislation in Europe and the 
USA (75).

g. Cellulose 
Cellulose is a GRAS homopolysaccharide produced by a 
broad range of bacterial species, including Komagataeibacter 
(former Gluconacetobacter), Agrobacterium, Rhizobium, 
Salmonella, and Sarcina. Komagataeibacter is the most 
active strain in cellulose production with high yield and 
purity (1,18). The chemical composition of bacterial 
cellulose is indistinguishable from the plant one; however, 
it is free of hemicellulose, lignin, and pectin, which 
simplifies its extraction. Bacterial cellulose shows a higher 
water holding capacity and longer drying time (75), both 
of which make it a good candidate for use in food systems 
(1,76,77).  

Bacterial cellulose as a thickener and gelling agent has 
several applications in increasing water binding capacity 
of surimi (78), improving the gel strength of tofu (79), 
replacement of fat in meatballs (80), emulsion and foam 
stabilization of ice cream (81) and immobilization of 
probiotic bacteria (82). As a dietary fiber, it can help to 
reduce food calories and improve body health.

Fructans 
The fructans are made from sucrose by fructosyltransferase 
enzyme and can be separated into two groups of levan-
type and inulin-type. 

a. Levan 
Levan is a non-toxic homofructan found in plants and 
some yeasts, fungi, and bacteria (83,84). Levan sucrase 
(also called sucrose 6-fructosyltransferase. EC 2.4.1.10) is 
responsible for levan biosynthesis (85). 

Levan is water and oil-soluble polymer and insoluble 
in almost all organic solvents (86). It has low intrinsic 
viscosity and does not dissolve or swell in water at room 
temperature. It is resistant to amylase and invertase (43,87). 
It has some beneficial applications in medicine such as 
a plasma volume expander (88), anti-obesity agent (89), 
antitumor agent (90), and hyperglycaemic inhibitor (91). 
Levan can be used as a thickener, emulsifier, stabilizer, 
film-forming agent, encapsulating agent, and carrier for 
flavor in the food industry (92).

A study on animals showed that the intake of levan can 
stimulate the growth of lactic acid bacteria and increases 

https://www.sciencedirect.com/science/article/pii/S0960852417307472#b0305
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their number in the feces (83). Levan heptose can also 
cause an increase in the fecal counts of Bifidobacterium sp. 
(93).

Levan can be used for film packaging; however, pure 
levan films are too brittle for practical use due to the lack 
of long flexible moieties in levan, which can be solved 
by the addition of plasticizers (84). Using more than 10 
wt% glycerol plasticizer can reduce the fragility of the 
films (94). Levan-based films are good oxygen barriers 
(84). Usually, biopolymer nanocomposites have greater 
properties than the corresponding pure biopolymers. Due 
to the high molecular weight, and the highly branched 
and dense globular structure of levan, significant 
intermolecular entanglement is not possible. At the same 
time, using exfoliated montmorillonite clay blended with 
levan facilitates the hydrogen bonding between levan 
(hydroxyl groups) and montmorillonite, which leads to 
the formation of transparent, elastic, and strong film (95).  

b. Inulin 
Inulin-type EPS are fructooligosaccharides which have 
many applications in the food industry. It can increase the 
viscosity of water, which is dependent on the molecular 
weight and temperature (10). It can be used as a fat replacer 
in sausages (96,97) and non-fat functional dairy foods 
(98) and also a sugar replacer in chocolate (99). Generally, 
inulin gels are based on the interactions occurring between 
dissolved inulin chains. High molecular weight inulins 
are better gel formers than their lower molecular weight 
counterparts (10). 

Inulin is a soluble fiber fermented by intestinal bacteria, 
resulting in the generation of large amounts of short-
chain fatty acids; therefore, it can be used as a prebiotic in 
human and animal foodstuffs (100). Besides, it is effective 
in reducing food calories and blood triglycerides, lowering 
the risk of irritable bowel diseases, and preventing colon 
cancer (101,102). 

Heteropolysaccharides
Heteropolysaccharides consist of various types of 
monosaccharides. The most widely used varieties in the 
food industry are listed below.

Kefiran 
Kefiran is a water-soluble branched glucogalactan which 
consists of about equal amounts of D-galactose and 
D-glucose residues (103). It is excreted from kefir grains 
and is a potential food-grade thickener in fermented 
dairy products. It improves the rheological properties 
and viscosity of acidified milk and yogurt, which can be 
intensified by heat treatment (104). The viscosity of kefiran 
is lower than some polysaccharides such as locust bean or 
guar gum (105) and higher than some dextrans (106). 

At low concentrations (less than 1 g/L), it shows the 
Newtonian behavior, while at higher concentrations, the 
pseudoplastic or shear-thinning flow is seen. Kefiran 
can form a translucent gel during cryogenic treatment 

(freezing, frozen storage, and thawing) (107) and 
transparent edible films. The plasticizers such as glycerol 
and sorbitol at low concentrations are needed to decrease 
the stiffness of this polysaccharide-based film (103,108). 
Kefiran film has a good water vapor barrier property. An 
excessive amount of glycerol (25 g/100 g) reduces the water 
vapor permeability, improves flexibility, and decreases the 
glass transition temperature of films. Kefiran films are 
soluble in water, which correlates with water temperature 
and glycerol addition (103,108). Using γ radiation (up to 9 
kGy) can improve surface hydrophobicity, water sensitivity, 
and water vapor permeability of kefiran film; however, 
it changes the color of films (109). Probiotic organisms 
(Lactobacillus plantarum CIDCA 8327 and Kluyveromyces 
marxianus CIDCA 8154) can be incorporated into 
edible kefiran films, which can increase the resistance 
of organisms to acid (110). These features of plasticized 
kefiran films improve their potential uses, especially in the 
food industry.

Surveys show the role of kefiran in controlling blood 
pressure, lowering serum cholesterol and sugar levels, 
increasing fecal wet weight in constipated rats (111), 
promoting antimicrobial activity, and improving wound 
healing properties (112).
 
Xanthan 
Xanthan is a high molecular weight, water-soluble, neutral, 
and non-toxic gum. This GRAS (38) heteropolysaccharide 
consists of repeating pentasaccharide units of D-glucose, 
D-mannose, and D-glucuronyl acid residues (molar ratio 
of 2:2:1) and variable proportions of O-acetyl and pyruvyl 
residues which can form a highly viscous solution in 
cold or hot water at low concentrations. It is resistant to 
enzymatic degradation and pH and temperature changes 
(113).

There are different opinions regarding the antioxidant 
properties of xanthan. Gawlik-Dziki revealed the strong 
antioxidative effect of xanthan gum (114). However, Sun 
et al stated that adding xanthan to whey protein isolate 
(WPI) stabilized oil-in-water emulsions prevented the 
antioxidant activity of WPI due to its interaction with 
xanthan, followed by the acceleration of lipid oxidation 
(115).

Xanthan is primarily used in the food industry due to 
its viscosifying and stabilizing properties. Its solution 
shows a shear-reversible pseudoplastic behavior. The high 
molecular weight xanthan shows high Newtonian viscosity 
at lower shear rates due to the formation of complex 
superstructures through hydrogen bonding. By increasing 
the shear rate, the network separates, and individual 
macromolecules are aligned in the shear direction; 
therefore, the viscosity decreases (116). Synergistic 
interactions between xanthan and plant galactomannans 
(such as locust bean and guar gum) at room temperature 
result in enhanced viscosity (117). Low concentrations of 
xanthan (up to 3 g/L) do not affect the yogurt viscosity, 
while as the concentration increases, the viscosity increases 
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(118). The viscosity of xanthan strongly depends on salt or 
sugar concentration in the solution (105).

Thickening and emulsion stabilizing effects of xanthan 
are due to the formation of a fragile gel-like structure in 
the continuous phase of the emulsion, which prevents the 
oil droplets from creaming. However, due to the weak gel 
structure, xanthan alone cannot stabilize the emulsion 
unless it is combined with the proteins. Exclusively, adding 
xanthan to oil/water emulsions stabilized with lupin and 
soy protein isolates enhances the emulsion stability, which 
is associated with an increase of protein at the interface, 
and builds a polysaccharide network in the water phase 
(119). It can also reduce the oil uptake in deep frying foods 
(120). 

Gellan 
Gellan gum is a high molecular weight anionic 
polysaccharide composed of a tetrasaccharide backbone 
consisting of 2 β-D-glucose, L-rhamnose, D-glucuronic 
acid, and acyl (glyceryl and acetyl) substituents (29). It 
is available in a substituted or unsubstituted form. The 
polymer is produced from two acyl substituents present 
in the 3-linked glucose; namely, L-glyceryl positioned at 
O(2) and acetyl at O(6) (121). It is resistant to heat and 
relatively to pH. As the gellan gum is relatively non-toxic, 
it is approved by the FDA for use in foods (122). 

It acts as a stabilizer, binder, thickener, and perfect 
gelling agent in different types of foods (123). Gellan gum 
is insoluble in cold water but can disperse in milk and 
reconstituted milk. A gel is produced rapidly by heating 
and cooling gellan solutions in the presence of cations. The 
rheological characteristics of gel depend on the level of acyl 
substituent. The low acyl one requires acid (H+) and ions 
such as calcium (Ca2+), magnesium (Mg2+), sodium (Na+), 
and potassium (K+) to produce the gel. Divalent cations 
are more efficient than monovalent ions (121). Gellan 
gum can be used as a gelling agent in desserts and jams to 
provide gelatin with mouth-feel characteristics and a more 
potent gel (at a lower concentration) compared to pectin. 

Interaction between gellan (negative charge) and milk 
protein (positive charge) leads to protein precipitation. 
Therefore its use in the solutions/gels of milk proteins 
is not reasonable unless by neutralizing the negative 
charges (124). However, its interaction with casein and 
lactoglobulins increases the yield of cheese and reduces 
the loss of proteins in whey. Both types of gellan can be 
used in a stirred yogurt; however, using the low-acyl type 
gives a lumpy consistency to the yogurt, which must be 
thoroughly mixed to achieve a smooth texture. High-acyl 
gellan is the only form that can be used in set yogurts 
(121). Adding low-acyl gellan can increase the heat 
stability of fermented cream so that it keeps the structure 
after being added to hot foods (125). It can also be used as 
a bulking agent in the ice cream, texture, and flavor release 
in jellies and improve the efficiency of other hydrocolloids 
in confections (125). Combinations of low acyl gellan 
and carrageenan can be used to produce gelatin-free 

confectionery which is suitable for halal (121).
Gellan film has excellent oil barrier properties, and 

conversely, it is a poor moisture barrier, which can be 
improved by adding lipids (126). Coating foods with gellan 
can reduce fat absorption during deep-frying, resulting in 
a reduction of fat in the final product (120). 

Konjac glucomannan–gellan gum blend films are 
suitable for the release of active agents such as nisin. 
They were found to have antimicrobial activity against 
Staphylococcus aureus, which can be enhanced by 
increasing the content of gellan gum (127). A composite 
film composed of the gellan and cassava starch shows 
relatively good mechanical and barrier properties (128). 
Gellan film can act as a carrier of vitamin C (129) and as 
a matrix for encapsulation of heat-sensitive and probiotic 
bacteria (130) and essential fatty acids in the food (131).

Alginate 
The alginates are linear anionic biocompatible 
polysaccharides produced from seaweed and bacteria 
(132). Intake of alginates as dietary fiber can decrease 
the intestinal absorption and destructive potential 
of gastrointestinal luminal contents, increase satiety, 
modulate the colonic microflora, and promote the colonic 
barrier function (133). It is used as a viscosity regulator, 
stabilizer, and packaging material in the food industry, and 
has applications in wound healing, drug delivery, and cell 
microencapsulation in medical sciences (32,133-136). It is 
well known that the M/G ratio, the degree of acetylation, 
and the molecular weight determine their rheological 
properties (137). As the gelling properties are linked to the 
G subunits interacting with divalent ions, such as calcium, 
increasing the G-blocks leads to the formation of stronger 
gels with higher viscosity in the presence of Ca2+ (87).

Viilian 
The viilian is the linear heteropolysaccharide isolated from 
a ropy fermented milk product “viili” and is composed of 
glucose, galactose, rhamnose, and phosphate with a molar 
ratio of 2:2:1:1, respectively (31). Viilian decreases the 
syneresis of fermented milk products. It can be used as 
a thickener in food systems and is also correlated to the 
lowering of serum cholesterol levels in rats (138).

Acetan
The acetan (or xylinan) is an anionic heteropolysaccharide 
produced by Acetobacter xylinum. It is a good viscosifier 
and gelling agent in sweet confectionery products (139).

The main applications of various EPSs in the food 
system are summarized in Table 2.

Isolation and Purification of EPS
Due to the favorable effects of EPS mentioned above, in 
recent years, interest in the isolation of these compounds 
and their use in different industries has increased. The 
isolation method should not affect the chemical and 
physical properties of the polysaccharides (180). Microbial 

https://en.wikipedia.org/wiki/Glucose
https://en.wikipedia.org/wiki/Rhamnose
https://en.wikipedia.org/wiki/Glucuronic_acid
https://en.wikipedia.org/wiki/Glucuronic_acid
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Table 2. The Applications of EPS in the Food Industry 

EPS Food industry Applications References

Dextran

Bakery Improves the softness, crumb texture, and loaf volume  38

Dairies
Ice cream: cryoprotectant and stabilizer
Cheese: improves water binding
Butter: fat replacer (polydextrose)

140-142 

Confectionery Prevents sugar crystallization, gelling agents in jelly candies 43, 143

Frozen and Dried Retard oxidation and chemical changes 141

Functional foods
Prebiotic: stimulates the growth of probiotics Bifidobacterium lactis, B. infantis, and 
Lactobacillus acidophilus

144

Oil Oil recovery enhancement, emulsion stabilizer 39, 145

Food packaging
Dextran-coated silver nanoparticles: reduces oxygen transfer and inhibition of Escherichia 
coli

146

Pullulan

Food packaging
Reduces respiration rates of vegetables, extends the shelf life of fresh foods, antimicrobial 
films

49, 57

Functional foods Prebiotic: enhances the variability of Bifidobacterium and Lactobacillus in yogurt 147

Dairies Yogurt: thickener, increases viscosity, fat replacer 147, 148 

Confectionery Starch replacer, reduces retrogradation 149

Curdlan

Meat products
Fat mimetic, increase water holding capacity, increase adhesiveness and viscosity of 
meatballs

70, 66 

Confectionery Reduces oil uptake, gelling agents 68, 150

Dairies Improves texture of tofu, yogurt, Cream: fat mimetic 151

Functional foods Prebiotic 151

Alternan
Functional foods Prebiotic 152

Artificially sweetened foods Bulking agents 153

Reuteran Bakery
Improve the bread quality (from gluten-free sorghum flours)
Dietary fiber: enhances the nutritional properties of bread

154

Scleroglucan
Dairies, Confectionery, 
Frozen food

Thickener, gelling or stabilizing agent 75

Cellulose

Meat products Keeping water binding capacity, thickener, stabilizer, fat replacer 155, 156

Dairies
Yogurt: stabilizer, decrease syneresis, increase viscosity
Ice cream: fat substitute, stabilizer, reduces the melting rate, increase fiber content

157-159

Food packaging Tough, biodegradable, and acceptable levels of water vapor permeability 160

Confectionery Biscuits: fat replacer, increases the hardness 161

Levan
Functional foods

Prebiotics: increases Bifidobacterium spp. count, assist in the absorption of calcium and 
magnesium in the gut

94

Beverages Stabilizer, emulsifier, flavour enhancer 162

Inulin

Meat products Sausage and burgers: fat substitute, higher fiber content 163

Dairies
Yogurt: fat replacer, improves overrun, viscosity and melting properties of frozen yogurt
Ice cream: reduce the melting rate, increases fiber content

159, 164-166 

Functional foods Prebiotics: increases availability of probiotics (L. acidophilus, Bifidobacterium lactis) in food 164,165

Confectionery Sugar replacer in chocolate 100

Kefiran

Dairies
Stirred fruit yogurt: fat replacer, decreases syneresis, decreases yeast and mold growth 
Acidified milk: gelling agent, increases viscosity, shelf life.

108, 167

Food packaging Compostable and biodegradable 168

Functional foods Prebiotic 168

Xanthan

Dairies Increases viscosity, thickener and emulsion stabilizer 119

Frying foods Reduce oil uptake 121

Bakeries Thickener, stabilizer, and suspending agent 169

Food packaging
Biodegradable, inhibits the growth of aerobic  
microorganisms, extends the shelf life of meat and fish

170

Sauce & dressing Better mouthfeel, egg yolk substitute in mayonnaise 171, 172

Confectionery
Cakes, muffins, biscuits: uniform distribution of moisture, increases water-binding and air 
stability in batter Chocolate:  cocoa substitution, increases the melting point

173, 174
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EPS Food industry Applications References

Gellan 

Confectionery Gelling agents 150

Functional foods Encapsulation of probiotics such as Lactobacillus paracasei in yogurt 175

Food packaging Monitoring seafood freshness 176

Alginate

Food packaging Preserves volatile flavor compounds, incorporation with antimicrobials, prolong shelf life 177

Functional foods Encapsulating active enzymes and live bacteria 178

Dairies
Ice cream: thickener, stabilizer, increases viscosity, increases heat–shock resistance, reduces 
crystal formation, and improves melting characteristics

178

Restructured foods Thermo-irreversible gels 178

Viilian Dairies Thickener, decreases the syneresis of fermented milk products 138

Acetan Confectionery Viscosifier and gelling agent 139

Table 2. Contined.

Table 3. Typical Processes for Purification of Important Microbial Exopolysaccharides (EPS)

EPS Isolation Process Reference

Dextran

Cell removal by centrifugation or filtration 
Precipitation by water-miscible organic solvents (ethanol, acetone, etc.)
Re-precipitation and dialysis 
Purification by size-exclusion chromatography (high molecular weight dextran), or ultrafiltration (low molecular weight 
dextran) 

142

Pullulan

Cell removal (centrifugation or filtration)
Melanin removal (activated charcoal/Alcohols in combination with salts)
Precipitation (propyl alcohol, isopropyl alcohol, tetrahydrofuran, dioxane) 
Purification (ultrafiltration, ion exchange chromatography)

52

Levan

Cell removal (centrifugation)
Deactivation of enzyme in supernatant 
Precipitation (isoelectric point, organic solvent, salting out, polyelectrolytes flocculation)
Separation of levan (filtration, dialysis)
Purification

163

Xanthan
Pasteurization of the fermented broth (sterile bacteria and deactivate enzymes) 
Precipitation of xanthan or cell free xanthan by alcohol.
Washing with water and re-precipitation

172

Kefiran
Heating the bacterial culture and  cell removal (centrifugation)
Precipitation (cold ethanol)
Washing with water and re-precipitation

183

Cellulose

Harvesting the pellicles (centrifugation)
Washing with water to remove the residual culture medium
Lyse the microbial cells (alkali at 80°C)
Filtration (remove the dissolved materials) 
Neutralization with 5% acetic acid and rinsing  
Washed with deionized water

184

EPS production occurs during the bacterial growth 
stages. The quality, molecular characteristics, and yield of 
EPS depend on the nutrient status and bacterial growth 
condition. Therefore, choosing the appropriate culture 
medium is the first step in isolating an adequate amount 
of high-quality EPS. An optimal balance between carbon 
(for energy production) and nitrogen (for cell synthesis) is 
needed to achieve high yields (181). Various media were 
used to culture EPS-producing LAB, most of which are 
skim milk and whey-based media (182). The concentration 
and type of simple sugars in the culture media affect the 
EPS yield (181). 

The simplest method of EPS isolation involves three stages 
of centrifugation (for cell removal), dialysis against water, 
and lyophilization. In some cases, ethanol precipitation 
may be used before dialysis to concentrate the EPS. As 
the culture media components become more complex, 
the extraction method becomes more sophisticated. 

For example, in high-protein environments, it may be 
necessary to reduce protein levels by trichloroacetic acid, 
proteases, or a combination of both. Other techniques such 
as membrane filtration (microfiltration, ultrafiltration, 
and diafiltration) may be used to purify the EPS (183). 
Table 3 presents the extraction process of some important 
microbial EPSs. The isolation method has an impact on 
the total amount of EPS obtained; therefore, different 
methods should be analyzed to determine the best method 
for isolation of EPS.

Conclusion
Nowadays, the ability of microorganisms to produce EPS 
has been the focus of attention. These natural compounds 
have different applications in various industries, including 
the food industry. The rapid growth of microorganisms, 
high productivity rate, and safety approval of EPS have 
enabled them to be used as inexpensive compounds to 

https://www.sciencedirect.com/science/article/pii/S0958694601001182#BIB41
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improve the texture, sensory, and nutritional attributes 
of foods and make functional food to treat some human 
diseases especially gastrointestinal disorders and metabolic 
syndromes.
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